Skip to main content

Numerical Methods for Fluids

  • Chapter
  • First Online:
The Lattice Boltzmann Method

Abstract

After reading this chapter, you will have insight into a number of other fluid simulation methods and their advantages and disadvantages. These methods are divided into two categories. First, conventional numerical methods based on discretising the equations of fluid mechanics, such as finite difference, finite volume, and finite element methods. Second, methods that are based on microscopic, mesoscopic, or macroscopic particles, such as molecular dynamics, lattice gas models, and multi-particle collision dynamics. You will know where the particle-based lattice Boltzmann method fits in the landscape of fluid simulation methods, and you will have an understanding of the advantages and disadvantages of the lattice Boltzmann method compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Before electronic computers, numerical solutions were performed manually by people whose job title was “computer”!

  2. 2.

    Stability and accuracy, especially in terms of the lattice Boltzmann method, are later covered in more detail in Sects. 4.4 and 4.5, respectively.

  3. 3.

    The forward difference approximation corresponds to the forward Euler approximation for time discretisation, shown in (2.1).

  4. 4.

    As a practical example, a deer can smell a hunter who is upwind of it, since the wind blows the hunter’s scent towards the deer.

  5. 5.

    We here use the term “volume” in a general sense, where a 2D volume is an area and a 1D volume is a line segment.

  6. 6.

    That is not to say that the FV method is limited to conservation equations; it can also be used to solve more general hyperbolic problems [6].

  7. 7.

    For the internal surfaces between adjacent finite volumes, the surface integrals from the two volumes will cancel each other.

  8. 8.

    In Fig. 2.5, S i is the triangular surface around each volume, and s j represents the straight-line faces of these triangles.

  9. 9.

    This straightforward force approach scales with the number N of particles as \(\mathcal{O}(N^{2})\), though more efficient approaches that scale as \(\mathcal{O}(N)\) also exist [10].

  10. 10.

    Most of them also conserve energy.

  11. 11.

    While the kernel function can be e.g. Gaussian, it is advantageous to choose kernels that are zero for \(\vert {\boldsymbol x} -{\boldsymbol x}_{j}\vert> h\), so that only particles in the vicinity of \({\boldsymbol x}\) need be included in the sum. Additionally, the fact that h j can be particle-specific and varying allows adaptive resolution.

  12. 12.

    For instance, molecular dynamics is tailored to simulating phenomena on an atomic and molecular level, and smoothed-particle hydrodynamics was invented to deal with the largely empty domains of astrophysical CFD.

  13. 13.

    The most common such method is covered in Sect. 4.1, with a number of alternative methods referenced in Sect. 4.2.5

  14. 14.

    This concise description is attributed to Sauro Succi.

References

  1. R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady State and Time Dependent Problems (SIAM, Philadelphia, 2007)

    Book  MATH  Google Scholar 

  2. C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)

    Book  MATH  Google Scholar 

  3. C. Canuto, M.Y. Hussaini, A.M. Quarteroni, A. Thomas Jr, et al., Spectral Methods in Fluid Dynamics (Springer Science & Business Media, New York, 2012)

    MATH  Google Scholar 

  4. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, Washington, DC, 1980)

    MATH  Google Scholar 

  5. J.H. Ferziger, M. Peric, A. Leonard, Computational Methods for Fluid Dynamics, vol. 50, 3rd edn. (Springer, New York, 2002)

    Google Scholar 

  6. R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  7. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd edn. (Pearson Education, Upper Saddle River, 2007)

    Google Scholar 

  8. O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, The Finite Element Method for Fluid Dynamics, 7th edn. (Butterworth-Heinemann, Oxford, 2014)

    MATH  Google Scholar 

  9. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, vol. 2 (Springer, New York, 1988)

    Book  MATH  Google Scholar 

  10. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Computational science series (Academic Press, San Diego, 2002)

    Google Scholar 

  11. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids. Oxford Science Publications (Clarendon Press, Oxford, 1989)

    MATH  Google Scholar 

  12. M. Karplus, J.A. McCammon, Nat. Struct. Biol. 9 (9), 646 (2002)

    Article  Google Scholar 

  13. J. Hardy, Y. Pomeau, O. de Pazzis, J. Math. Phys. 14 (12), 1746 (1973)

    Article  ADS  Google Scholar 

  14. U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56 (14), 1505 (1986)

    Article  ADS  Google Scholar 

  15. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  16. J.P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  17. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)

    MATH  Google Scholar 

  18. G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61 (20), 2332 (1988)

    Article  ADS  Google Scholar 

  19. F.J. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9 (4), 345 (1989)

    Article  ADS  Google Scholar 

  20. F.J. Higuera, J. Jimenez, Europhys. Lett. 9 (7), 663 (1989)

    Article  ADS  Google Scholar 

  21. X. He, L.S. Luo, Phys. Rev. E 56 (6), 6811 (1997)

    Article  ADS  Google Scholar 

  22. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19 (3), 155 (1992)

    Article  ADS  Google Scholar 

  23. P. Español, P. Warren, Europhys. Lett. 30 (4), 191 (1995)

    Article  ADS  Google Scholar 

  24. M.B. Liu, G.R. Liu, L.W. Zhou, J.Z. Chang, Arch. Computat. Methods Eng. 22 (4), 529 (2015)

    Article  MathSciNet  Google Scholar 

  25. P. Español, M. Revenga, Phys. Rev. E 67 (2), 026705 (2003)

    Article  ADS  Google Scholar 

  26. R.D. Groot, P.B. Warren, J. Chem. Phys. 107 (11), 4423 (1997)

    Article  ADS  Google Scholar 

  27. I. Pagonabarraga, M.H.J. Hagen, D. Frenkel, Europhys. Lett. 42 (4), 377 (1998)

    Article  ADS  Google Scholar 

  28. A. Malevanets, R. Kapral, J. Chem. Phys. 110 (17), 8605 (1999)

    Article  ADS  Google Scholar 

  29. A. Malevanets, R. Kapral, J. Chem. Phys. 112 (16), 7260 (2000)

    Article  ADS  Google Scholar 

  30. H. Noguchi, N. Kikuchi, G. Gompper, Europhys. Lett. 78 (1), 10005 (2007)

    Article  ADS  Google Scholar 

  31. G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, in Advanced Computer Simulation Approaches for Soft Matter Sciences III, Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008), pp. 1–87

    Google Scholar 

  32. T. Ihle, E. Tüzel, D.M. Kroll, Europhys. Lett. 73 (5), 664 (2006)

    Article  ADS  Google Scholar 

  33. E. Tüzel, G. Pan, T. Ihle, D.M. Kroll, Europhys. Lett. 80 (4), 40010 (2007)

    Article  Google Scholar 

  34. Y.G. Tao, I.O. Götze, G. Gompper, J. Chem. Phys. 128 (14), 144902 (2008)

    Article  ADS  Google Scholar 

  35. R. Kapral, in Advances in Chemical Physics, ed. by S.A. Rice (Wiley, New York, 2008), p. 89–146

    Google Scholar 

  36. E. Westphal, S.P. Singh, C.C. Huang, G. Gompper, R.G. Winkler, Comput. Phys. Commun. 185 (2), 495 (2014)

    Article  ADS  Google Scholar 

  37. A. Malevanets, J.M. Yeomans, Europhys. Lett. 52 (2), 231 (2000)

    Article  ADS  Google Scholar 

  38. T. Ihle, D.M. Kroll, Phys. Rev. E 67 (6), 066706 (2003)

    Article  ADS  Google Scholar 

  39. E. Allahyarov, G. Gompper, Phys. Rev. E 66 (3), 036702 (2002)

    Article  ADS  Google Scholar 

  40. J.K. Whitmer, E. Luijten, J. Phys. Condens. Matter 22 (10), 104106 (2010)

    Article  ADS  Google Scholar 

  41. M. Ripoll, R.G. Winkler, G. Gompper, Eur. Phys. J. E 23 (4), 349 (2007)

    Article  Google Scholar 

  42. N. Kikuchi, C.M. Pooley, J.F. Ryder, J.M. Yeomans, J. Chem. Phys. 119 (12), 6388 (2003)

    Article  ADS  Google Scholar 

  43. T. Ihle, E. Tözel, D.M. Kroll, Phys. Rev. E 72 (4), 046707 (2005)

    Article  ADS  Google Scholar 

  44. C.M. Pooley, J.M. Yeomans, J. Phys. Chem. B 109 (14), 6505 (2005)

    Article  Google Scholar 

  45. G.A. Bird, Phys. Fluids 6, 1518 (1963)

    Article  ADS  Google Scholar 

  46. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Claredon, Oxford, 1994)

    Google Scholar 

  47. C. Shen, Rarefied gas dynamics: Fundamentals, Simulations and Micro Flows (Springer, New York, 2005)

    Book  Google Scholar 

  48. G.A. Bird, Ann. Rev. Fluid Mech. 10, 11 (1978)

    Article  ADS  Google Scholar 

  49. E.S. Oran, C.K. Oh, B.Z. Cybyk, Ann. Rev. Fluid Mech. 30, 403 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  50. G.A. Bird, Comp. Math. Appl. 35, 1 (1998)

    Article  MathSciNet  Google Scholar 

  51. W. Wagner, J. Stat. Phys. 66, 1011 (1992)

    Article  ADS  Google Scholar 

  52. D. Violeau, Fluid Mechanics and the SPH Method: Theory and Applications, 1st edn. (Oxford University Press, Oxford, 2012)

    Book  MATH  Google Scholar 

  53. G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World Scientific Publishing, Singapore, 2003)

    Book  MATH  Google Scholar 

  54. P.J. Frey, P.L. George, Mesh Generation: Application to Finite Elements (Wiley, Hoboken, 2008)

    Book  MATH  Google Scholar 

  55. Z. Wang, Prog. Aerosp. Sci. 43 (1–3), 1 (2007)

    Article  Google Scholar 

  56. R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, D. Joseph, Int. J. Multiphas. Flow 29 (1), 117 (2003)

    Article  Google Scholar 

  57. S. Geller, M. Krafczyk, J. Tölke, S. Turek, J. Hron, Comput. Fluids 35 (8-9), 888 (2006)

    Article  Google Scholar 

  58. M. Yoshino, T. Inamuro, Int. J. Num. Meth. Fluids 43 (2), 183 (2003)

    Article  Google Scholar 

  59. B. Dünweg, A.J.C. Ladd, in Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008), pp. 1–78

    Google Scholar 

  60. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  61. R. Adhikari, K. Stratford, M.E. Cates, A.J. Wagner, Europhys. Lett. 71 (3), 473 (2005)

    Article  ADS  Google Scholar 

  62. B. Dünweg, U.D. Schiller, A.J.C. Ladd, Phys. Rev. E 76 (3), 036704 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  63. M. Gross, M.E. Cates, F. Varnik, R. Adhikari, J. Stat. Mech. 2011 (03), P03030 (2011)

    Article  Google Scholar 

  64. D. Belardinelli, M. Sbragaglia, L. Biferale, M. Gross, F. Varnik, Phys. Rev. E 91 (2), 023313 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  65. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M. (2017). Numerical Methods for Fluids. In: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-44649-3_2

Download citation

Publish with us

Policies and ethics