Skip to main content

Bounded Embeddings of Graphs in the Plane

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9843))

Included in the following conference series:

Abstract

A drawing in the plane (\(\mathbb {R}^2\)) of a graph \(G=(V,E)\) equipped with a function \(\gamma : V \rightarrow \mathbb {N}\) is x -bounded if (i) \(x(u) <x(v)\) whenever \(\gamma (u)<\gamma (v)\) and (ii) \(\gamma (u)\le \gamma (w)\le \gamma (v)\), where \(uv\in E\) and \(\gamma (u)\le \gamma (v)\), whenever \(x(w)\in x(uv)\), where x(.) denotes the projection to the x-axis. We prove a characterization of isotopy classes of embeddings of connected graphs equipped with \(\gamma \) in the plane containing an x-bounded embedding. Then we present an efficient algorithm, which relies on our result, for testing the existence of an x-bounded embedding if the given graph is a forest. This partially answers a question raised recently by Angelini et al. and Chang et al., and proves that c-planarity testing of flat clustered graphs with three clusters is tractable when the underlying abstract graph is a forest.

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no [291734].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By employing the technique of Bläsius and Rutter [6] also in the case of a union of internally disjoint paths between a pair of vertices [18].

References

  1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 37–48. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Angelini, P., Da Lozzo, G., Di Battista, G., Di Donato, V., Kindermann, P., Rote, G., Rutter, I., Planarity, W.: Embedding graphs with direction-constrained edges, Chap. 70, pp. 985–996 (2016)

    Google Scholar 

  3. Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 393–405. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biedl, T.C.: Drawing planar partitions III: two constrained embedding problems. Rutcor Res. Rep. 13–98, 13–98 (1998)

    Google Scholar 

  6. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, 6–8 January 2013, pp. 1030–1043 (2013). http://arxiv.org/abs/1112.0245

  7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geometry 36(2), 117–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput. Geom. 23(2), 191–206 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, H.C., Erickson, J., Xu, C.: Detecting weakly simple polygons. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1655–1670 (2015). arXiv:1407.3340

  11. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. J. Graph Algorithms Appl. 9(3), 391–413 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. Discrete Math. 309(7), 1856–1869 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: 30th Annual Symposium on Foundations of Computer Science, pp. 436–441, October 1989

    Google Scholar 

  15. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  16. Feng, Q.-W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In: Ding-Zhu, D., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  17. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P. (ed.) Algorithms–ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

    Google Scholar 

  18. Radoslav Fulek. Toward the Hanani-Tutte theorem for clustered graphs. 2014. arXiv:1410.3022v2

  19. Fulek, R.: Towards the Hanani-Tutte theorem for clustered graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 176–188. Springer, Heidelberg (2014)

    Google Scholar 

  20. Fulek, R.: C-planarity of embedded cyclic c-graphs (2016). arXiv:1602.01346v2

  21. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 263–288. Springer, New York (2012)

    Google Scholar 

  22. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Hong, S.-H., Nagamochi, H.: Simpler algorithms for testing two-page book embedding of partitioned graphs. Theoretical Computer Science (2016)

    Google Scholar 

  26. Hsu, W.-L., McConnell, R.M.: PC-trees and circular-ones arrangements. Theoret. Comput. Sci. 296(1), 99–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered planarity: embedded clustered graphs with two-component clusters. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 121–132. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Jelınková, E., Kára, J., Kratochvıl, J., Pergel, M., Suchỳ, O., Vyskocil, T.: Clustered planarity: small clusters in cycles and Eulerian graphs. J. Graph Algorithms Appl. 13(3), 379–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jünger, Michael, Leipert, Sebastian, Mutzel, Petra: Level planarity testing in linear time. In: Whitesides, Sue H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  30. Lengauer, T.: Hierarchical planarity testing algorithms. J. ACM 36(3), 474–509 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mabillard, I., Wagner, U. Eliminating Tverberg points, I. An analogue of the Whitney trick. In: Proceedings of theThirtieth Annual Symposium on Computational Geometry, SOCG 2014, pp. 171:171–171:180 (2014)

    Google Scholar 

  32. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1), 39–47 (2004). arXiv:1101.0967

    Article  MathSciNet  MATH  Google Scholar 

  34. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer Science & Business, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav Fulek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fulek, R. (2016). Bounded Embeddings of Graphs in the Plane. In: Mäkinen, V., Puglisi, S., Salmela, L. (eds) Combinatorial Algorithms. IWOCA 2016. Lecture Notes in Computer Science(), vol 9843. Springer, Cham. https://doi.org/10.1007/978-3-319-44543-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44543-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44542-7

  • Online ISBN: 978-3-319-44543-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics