Skip to main content

Development of Operando Transmission Electron Microscopy

  • Chapter
  • First Online:
Operando Research in Heterogeneous Catalysis

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 114))

Abstract

Traditional (high-resolution) Transmission Electron Microscopy (TEM) is limited to high vacuum environments due to interaction of the electron beam with gases, leading to noise and decreasing the resolution. This means only static materials can be studied, far away from realistic reaction conditions in gas atmosphere and at elevated temperatures. This chapter describes the development of equipment for operando TEM and the first studies of real in situ catalyst preparation and catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Knoll, E. Ruska, Zeitschrift für Physik 78, 318–339 (1932)

    Article  ADS  Google Scholar 

  2. F. Wu, N. Yao, Nano Energy 13, 735–756 (2015)

    Article  Google Scholar 

  3. F.E.I. company. http://www.fei.com/products/tem/titan-etem/?ind=MS

  4. P.J. Ferreira, K. Mitshuishi, E.A. Stach, MRS Bull. 33, 83–90 (2008)

    Article  Google Scholar 

  5. P. Gai, Top. Catal. 8, 97–113 (1999)

    Article  Google Scholar 

  6. H. Hashimoto, T. Naiki, T. Eto, K. Fujiwara, Jpn. J. Appl. Phys. 7, 946–952 (1968)

    Article  ADS  Google Scholar 

  7. R.T.K. Baker, Catal. Rev.: Sci. Eng. 19, 161–209 (1979)

    Article  Google Scholar 

  8. R.T.K. Baker, Carbon 27, 315–323 (1989)

    Article  Google Scholar 

  9. Haldor Topsøe company. http://topsoe.ru/research/Resources/Microscopy_movies.aspx?movieid={59D9E277-29E3-41A0-B49F-50519295C89E}

  10. S. Janbroers, P.A. Crozier, H.W. Zandbergen, P.J. Kooyman, Appl. Catal. B 102, 521–527 (2011)

    Article  Google Scholar 

  11. F. Tao, P.A. Crozier, Chem. Rev. 116, 3487–3539 (2016)

    Article  Google Scholar 

  12. T.W. Hansen, J.B. Wagner, Controlled Atmosphere Transmission Electron Microscopy—Principles and Practice. Springer International Publishing Switzerland (2016). ISBN 978-3-319-22987-4/22988-1

    Google Scholar 

  13. A. Kruize, Private communication

    Google Scholar 

  14. S. Giorgio, S. Sao Joao, S. Nitsche, D. Chaudanson, G. Sitja, C.R. Henry, Ultramicroscopy 106, 503–507 (2006)

    Google Scholar 

  15. P.L. Gai, E.D. Boyes, S. Helveg, P.L. Hansen, S. Giorgio, C.R. Henry, MRS Bull. 32, 1044–1050 (2007)

    Article  Google Scholar 

  16. J.F. Creemer, S. Helveg, G.H. Hoveling, S. Ullmann, A.M. Molenbroek, P.M. Sarro, H.W. Zandbergen, Ultramicroscopy 108, 993–998 (2008)

    Article  Google Scholar 

  17. Protochips. http://www.protochips.com/products/atmosphere-gas-environmental-cell.html

  18. L.F. Allard, W.C. Bigelow, S.H. Overbury, D.P. Nackashi, J. Damiano, Microsc. Microanal. 16, 296–297 (2010)

    Article  ADS  Google Scholar 

  19. L.F. Allard, S.H. Overbury, W.C. Bigelow, M.B. Katz, D.P. Nackashi, J. Damiano, Microsc. Microanal. 18, 656–666 (2012)

    Article  ADS  Google Scholar 

  20. L.F. Allard, W.C. Bigelow, S. Zhang, X. Pan, Z. Wu, S.H. Overbury, W.B. Carpenter, F.S. Walden, R.L. Thomas, D.S. Gardiner, B.W. Jacobs, D.P. Nackashi, J. Damiano, Microsc. Microanal. 20, 1572–1573 (2014)

    Article  ADS  Google Scholar 

  21. Hummingbird Scientific. http://hummingbirdscientific.com/products/gas-flow/

  22. D.H. Alsem, R.R. Unocic, G.M. Veith, K.L. More, N.J. Salmon, Microsc. Microanal. 18, 1158–1159 (2012)

    Article  ADS  Google Scholar 

  23. H.L. Xin, K. Niu, D.H. Alsem, H. Zheng, Microsc. Microanal. 19, 1558–1568 (2013)

    Article  ADS  Google Scholar 

  24. R. Colby, B. Kabius, D.H. Alsem, Microsc. Microanal. 19, 474–475 (2013)

    Article  ADS  Google Scholar 

  25. http://DENSsolutions.com/products/gas

  26. NIMIC. http://nimic.physics.leidenuniv.nl

  27. J.F. Creemer, S. Helveg, G.H. Hoveling, S. Ullmann, P.J. Kooyman, A.M. Molenbroek, H.W. Zandbergen, P.M. Sarro, in IEEE International Conference on MEMS Technical Digest, vol. 22 (2009), pp. 76–79

    Google Scholar 

  28. J.F. Creemer, S. Helveg, P.J. Kooyman, A.M. Molenbroek, H.W. Zandbergen, P.M. Sarro, J MEMS 19, 254–264 (2010)

    Article  Google Scholar 

  29. Leiden Probe Microscopy. http://www.leidenprobemicroscopy.com

  30. J.F. Creemer, F. Santagata, B. Morana, L. Mele, T. Alan, E. Iervolino, G. Pandraud, P.M. Sarro, M.E.M.S. Proceedings, Cancun. MEXICO 2011, 23–27 (2011)

    Google Scholar 

  31. B. Morana et al., In preparation

    Google Scholar 

  32. S.B. Vendelbo, P.J. Kooyman, J.F. Creemer, B. Morana, L. Mele, P. Dona, B.J. Nelissen, S. Helveg, Ultramicroscopy 133, 72–79 (2013)

    Article  Google Scholar 

  33. T. Yokosawa, T. Alan, G. Pandraud, B. Dam, H. Zandbergen, Ultramicroscopy 112, 47–52 (2012)

    Article  Google Scholar 

  34. S. Malladi, C. Shen, Q. Xu, T. de Kruijff, E. Yücelen, F. Tichelaar, H.W. Zandbergen, Chem. Commun. 49, 10859–10861 (2013)

    Article  Google Scholar 

  35. Roobol, S.B., in preparation, http://spacetime.uithetblauw.nl

  36. S. Chenna, P.A. Crozier, Micron 43, 1188–1194 (2012)

    Article  Google Scholar 

  37. S.B. Vendelbo et al., In preparation

    Google Scholar 

  38. H.J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, Angew. Chem. Int. Ed. 50, 10064–10094 (2011)

    Article  Google Scholar 

  39. R. Imbihl, G. Ertl, Chem. Rev. 95, 697–733 (1995)

    Article  Google Scholar 

  40. M.A. Liauw, P.J. Plath, N.I. Jaeger, J. Chem. Phys. 104, 6375–6386 (1996)

    Article  ADS  Google Scholar 

  41. S.B. Vendelbo, C.F. Elkjaer, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B.J. Nelissen, R. van Rijn, J.F. Creemer, P.J. Kooyman, S. Helveg, Nat. Mater. 13, 884–890 (2014)

    Article  ADS  Google Scholar 

  42. H. Yoshida, K. Matsuuara, Y. Kuwauchi, H. Kohno, S. Shimada, M. Haruta, S. Takeda, Appl. Phys. Express 4, 065001 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This chapter would not have been written without the practical and conceptual work performed by and in collaboration with Henny W. Zandbergen, J. Fredrik Creemer, Joost W.M. Frenken, Gert-Jan van Baarle, G. Marien Bremmer, Peter A. Crozier, Pleun Dona, Christian Elkjær, Stig Helveg, Stephan Janbroers, Luigi Mele, Bruno Morana, Bart J. Nelissen, (Pita) I. Puspitasari, Sander B. Roobol, Richard van Rijn, Søren B. Vendelbo, and Sven Ullmann. The work on the nanoreactor system was performed in the framework of NIMIC (Nano IMaging under Industrial Conditions), a SmartMix project of the Dutch Ministry of Economic Affairs [26].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Jane Kooyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kooyman, P.J. (2017). Development of Operando Transmission Electron Microscopy. In: Frenken, J., Groot, I. (eds) Operando Research in Heterogeneous Catalysis. Springer Series in Chemical Physics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-44439-0_5

Download citation

Publish with us

Policies and ethics