Skip to main content

Space as a Source and as an Object of Knowledge: The Transformation of the Concept of Space in the Post-Kantian Philosophy of Geometry

  • Chapter
  • First Online:
Space, Time and the Limits of Human Understanding

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 2751 Accesses

Abstract

This paper deals with the transformation of the concept of space in the post-Kantian philosophy of geometry from the second half of the nineteenth century to the early twentieth century. Kant famously characterized space and time as forms of intuitions, which lie at the foundations of the apodictic knowledge of mathematics. The success of his philosophical account of space was due not least to the fact that Euclidean geometry was widely considered to be a model of apodictic certainty at that time. However, such later scientific developments as non-Euclidean geometries and the general theory of relativity called into question the certainty of Euclidean geometry and posed the problem of reconsidering space not so much as a source of knowledge, but as an open question for empirical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Several examples are discussed in Friedman [2, Ch. 1].

  2. 2.

    See [8, Ch. 5]. Helmholtz addressed two different questions. The first concerned the two-dimensionality of vision. At the time Helmholtz was writing, the dominant view endorsed by Johannes Müller, among others, was that a two-dimensional, spatial representation is primitively given in vision. In this view, only the perceptions of depth and of distance (i.e., the kind of perceptions that presuppose three-dimensionality) have to be learned. By contrast, Helmholtz sought to derive all spatial representations from the association of nonspatial sensations. The second question concerned the singularity of vision. Helmholtz called nativist Müller, Ewald Hering, and all those who derived the singularity of vision from the supposition of an anatomical connection between the two retinas.

  3. 3.

    For a discussion of Helmholtz’s claims about the “transcendental” status of space, see Biagioli [10].

  4. 4.

    See, e.g., Helmholtz [7, p. 142]. Notice, however, that there were important turning points in Helmholtz’s relation to Kant in this regard. Cf. Hatfield [8] and Hyder [11].

  5. 5.

    For an introductory account of the discovery of non-Euclidean geometry and its prehistory, see Engel and Stäckel [12].

  6. 6.

    Sartorius von Waltershausen [15, p. 81] reported that even Gauss made an attempt to test the Euclidean hypothesis during his geodetic work. However, this interpretation is controversial and it was only after Bolyai’s and Lobachevsky’s works that the question arose whether the geometry of space could be non-Euclidean (see [16]).

  7. 7.

    For a comprehensive account of nineteenth-century philosophy of geometry, see Torretti [18].

  8. 8.

    On the discussion of Helmholtz’s view in neo-Kantianism, see Biagioli [19].

  9. 9.

    On Klein’s relationship to Lie and the reception of the Erlanger Programm, see Hawkins [22] and Rowe [23].

  10. 10.

    On the development of group theory from Galois to Klein, see Wussing [24].

  11. 11.

    For a discussion of different positions, see Norton [28] and Ryckman [29].

  12. 12.

    See Ryckman [29, Chaps. 5 and 6].

  13. 13.

    On the development of Cassirer’s thought from neo-Kantianism to the philosophy of symbolic forms, see Ferrari [31].

References

  1. Kant, I. (1998). Critique of pure reason. (P. Guyer & A.W. Wood, trans.). Cambridge: Cambridge Univ. Press.

    Google Scholar 

  2. Friedman, M. (1992). Kant and the exact sciences. Cambridge, Mass.: Harvard Univ. Press.

    Google Scholar 

  3. Cassirer, E. (1907). Kant und die moderne Mathematik. Kant-Studien, 12, 1–49.

    Article  Google Scholar 

  4. Hintikka, J. K. (1973). Logic, language-games and information: Kantian themes in the philosophy of logic. Oxford: Clarendon Press.

    MATH  Google Scholar 

  5. Parsons, C. (1992). The transcendental aesthetic. In P. Guyer (Ed.), The Cambridge companion to Kant (pp. 62–100). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  6. Friedman, M. (2000). Geometry, construction, and intuition in Kant and his successors. In G. Sher & R. L. Tieszen (Eds.) Between logic and intuition: Essays in honor of Charles Parsons (pp. 186–218). Cambridge University Press.

    Google Scholar 

  7. von Helmholtz, H. (1977). Epistemological writings. Dordrecht: Reidel.

    Book  Google Scholar 

  8. Hatfield, G. C. (1990). The natural and the normative: Theories of spatial perception from Kant to Helmholtz. Cambridge, Mass.: MIT Press.

    Google Scholar 

  9. von Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: Voss.

    MATH  Google Scholar 

  10. Biagioli, F. (2014). What does it mean that “space can be transcendental without the axioms being so”? Helmholtz’s claim in context. Journal for General Philosophy of Science, 45, 1–21.

    Article  Google Scholar 

  11. Hyder, D. J. (2009). The determinate world: Kant and Helmholtz on the physical meaning of geometry. Berlin: de Gruyter.

    Book  Google Scholar 

  12. Engel, F., & Stäckel, P. E. (Eds.). (1895). Die Theorie der Parallellinien von Euklid bis auf Gauss : Eine Urkundensammlung zur Vorgeschichte der nichteuklidischen Geometrie. Leipzig: Teubner.

    MATH  Google Scholar 

  13. Kline, M. (1980). Mathematics: The loss of certainty. Oxford: Oxford University Press.

    Google Scholar 

  14. Newton, I. (1687). Philosophiæ Naturalis Principia Mathematica. London: Streater.

    Google Scholar 

  15. von Waltershausen, S. W. (1856). Gauss zum Gedächtnis. Leipzig: Hirzel.

    MATH  Google Scholar 

  16. Gray, J. J. (2006). Gauss and non-Euclidean geometry. In A. Prékopa & E. Molnár (Eds.). Non-Euclidean geometries: János Bolyai memorial volume (pp. 61–80). New York: Springer. .

    MATH  Google Scholar 

  17. Riemann, B. (1854/1867). Über die Hypothesen, welche der Geometrie zu Grunde liegen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13, 133–152.

    Google Scholar 

  18. Torretti, R. (1978). Philosophy of geometry from Riemann to Poincaré. Dordrecht: Reidel.

    Book  MATH  Google Scholar 

  19. Biagioli, F. (2014). Hermann Cohen and Alois Riehl on geometrical empiricism. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 4, 83–105.

    Google Scholar 

  20. Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig: Teubner.

    Google Scholar 

  21. Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert.

    MATH  Google Scholar 

  22. Hawkins, T. (1984). The Erlanger Programm of Felix Klein: Reflections on its place in the history of mathematics. Historia Mathematica, 11, 442–470.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rowe, D. E. (1992). Klein, Lie, and the Erlanger Programm. In L. Boi, D. Flament, & J.-M. Salanskis (Eds.), 1830–1930: A century of geometry, epistemology, history and mathematics (pp. 45–54). Berlin: Springer.

    Google Scholar 

  24. Wußing, H. (1969). Die Genesis des abstrakten Gruppenbegriffes. Berlin: VEB Deutscher Verlag der Wissenschaften.

    MATH  Google Scholar 

  25. Klein, F. (1911). Über die geometrischen Grundlagen der Lorentzgruppe. Physikalische Zeitschrift, 12, 17–27.

    Google Scholar 

  26. Einstein, A. (1921). Geometrie und Erfahrung. Berlin: Springer.

    Book  MATH  Google Scholar 

  27. Einstein, A. (1916). Die Grundlagen der allgemeinen Relativitätstheorie. Annalen der Physik, 49, 769–822.

    Article  ADS  MATH  Google Scholar 

  28. Norton, J. D. (1989). Coordinates and covariance: Einstein’s view of spacetime and the modern view. Foundations of Physics, 19, 1215–1263.

    Article  ADS  MathSciNet  Google Scholar 

  29. Ryckman, T. A. (2005). The reign of relativity: Philosophy in physics 1915–1925. New York: Oxford University Press.

    Book  Google Scholar 

  30. Weyl, H. (1950). Space, time, matter (H.L. Brose, trans.). New York: Dover.

    Google Scholar 

  31. Ferrari, M. (2003). Ernst Cassirer—Stationen einer philosophischen Biographie. Hamburg: Meiner.

    Google Scholar 

  32. Duhem, P. (1914). La Théorie physique, son objet—sa structure (2nd ed.). Paris: Rivière.

    Google Scholar 

  33. Cassirer, E. (1923). Substance and function and Einsteins theory of relativity. (M.C. Swabey & W.C. Swabey, Trans.). Chicago: Open Court.

    Google Scholar 

  34. Cassirer, E. (1931). Mythischer, ästhetischer und theoretischer Raum. Zeitschrift für Ästhetik und allgemeine Kunstwissenschaft, 25, 21–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Biagioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biagioli, F. (2017). Space as a Source and as an Object of Knowledge: The Transformation of the Concept of Space in the Post-Kantian Philosophy of Geometry. In: Wuppuluri, S., Ghirardi, G. (eds) Space, Time and the Limits of Human Understanding. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-44418-5_1

Download citation

Publish with us

Policies and ethics