Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 77))

  • 597 Accesses

Abstract

As shown in Chap. 2, for the UDP-like system without observation lost, due to the complexity of the coefficients, there is no recursive formula to compute the estimation. Thus the Riccati equation method cannot be used to analyze the error covariances. Moreover, the summation part in \(P_{k|k}\) contains exponentially increasing terms, which not only results in extremely high computational requirements on memory and CPU time, but also brings difficulties in determining the stability of \(P_{k|k}\). In this chapter, we develop an auxiliary estimator method to study the stability of \(P_{k|k}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross, S.M.: Introduction to Probability Models. Academic Press, Orlando (2006)

    Google Scholar 

  2. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lin .

Appendix

Appendix

Proof of Lemma 3.1

Proof

Note that in the proof of Lemma 2.2, the terms \(p(\varTheta _{k-1}^i|\mathcal {I}_{k-1})\) and \(p(\varTheta _{k-1}^i|\mathcal {I}_{k})\), that is, \(\alpha ^i_{k|k-1}\) and \(\alpha ^i_{k|k}\), are not involved. It means that, the derivation of \(p(x_k|\varTheta _{k-1}^i,\mathcal {I}_{k})\) is independent of \(p(\varTheta _{k-1}^i|\mathcal {I}_{k})\). Similarly, the derivation of \( p(\breve{x}_k|\varTheta _{k-1}^i,\mathcal {I}_{k})\) is independent of \(\breve{p}(\varTheta _{k-1}^i|\mathcal {I}_{k})\). Since \(p(\breve{x}_k|\varTheta ^i_{k-1},\mathcal {I}_{k})\) is the same function as \(p(x_k|\varTheta ^i_{k-1},\mathcal {I}_{k})\). It follows from Lemma 2.2, we have

$$\begin{aligned} p(\breve{x}_k|\varTheta _{k-1}^i,\mathcal {I}_{k}) = \mathcal {N}_{\breve{x}_k}(m^i_{k|k},S_{k|k}). \end{aligned}$$

Likewise,

$$\begin{aligned} p(\breve{x}_k|\varTheta _{k-1}^i,\mathcal {I}_{k-1}) = \mathcal {N}_{\breve{x}_k}(m^i_{k|k-1},S_{k|k-1}), \end{aligned}$$

where \(m^i_{k|k-1}\) and \(m^i_{k|k}\) evolve in the same way as (2.7).

Define \(\breve{p}(\varTheta ^i_{k-1}|\mathcal {I}_{k-1})\) in (3.6a) as \(\breve{\alpha }^i_{k|k-1}\), and \(\breve{p}(\varTheta ^i_{k-1}|\mathcal {I}_{k})\) in (3.6b) as \(\breve{\alpha }^i_{k|k}\).

Firstly, we check (3.8a). Let \(1 \le i\le 2^{k-1}\),

$$\begin{aligned} \breve{\alpha }^i_{k|k-1} \triangleq {}&\breve{p}(\varTheta _{k-1}^i|\mathcal {I}_{k-1})\\ = {}&p(\nu _{k-1}=0)\breve{p}(\varTheta _{k-2}^i|\mathcal {I}_{k-1})\\ = {}&\bar{\nu }\breve{\alpha }^i_{k-1|k-1}. \end{aligned}$$

Similarly, we will have \(\breve{\alpha }^i_{k|k-1} = \nu \breve{\alpha }^{i-2^{k-1}}_{k-1|k-1}\), for \(2^{k-1}+1 \le i\le 2^k\). Hence (3.8a) holds.

Then we check (3.8b). The proof is by mathematical induction. For \(k=1\), \(\breve{\alpha }^i_{1|1} \triangleq p(\varTheta ^i_0|y_1)\). Thus \(\breve{\alpha }^i_{1|1}=\alpha ^i_{1|1}\) at time \(k=1\). Take \(i=1\), from (2.30),

$$\begin{aligned} \breve{\alpha }^1_{1|1}={}&\alpha ^1_{1|1}\\ ={}&\frac{ \alpha ^1_{1|0}p(y_1|\nu _0=0)}{\alpha ^1_{1|0}p(y_1|\nu _0=0)+\alpha ^2_{1|0}p(y_1|\nu _0=1)}. \end{aligned}$$

By the definition of \(\lambda ^i_{k-1}\) and \(\psi _{k-1}^i(y_k)\) in (3.8b), \(\psi _0^i(y_1) = p(y_1|\nu _0=i)\), for \(i=0\) or 1. Note that \(\breve{\alpha }^1_{1|0}=p(\varTheta ^1_0)=\alpha ^1_{1|0}\), then \(\breve{\alpha }^1_{1|1}=\lambda _0^0\breve{\alpha }^1_{1|0}\) is obtained. By the same derivations, we have \(\breve{\alpha }^2_{1|1}=\lambda _0^1\breve{\alpha }^2_{1|0}\). Then (3.8b) holds for \(k=1\).

Suppose that (3.8b) is true for \(1,\ldots , k\). The condition for \(k+1\) is examined as follows. Let \(1 \le i\le 2^k\), by (2.2), \(\varTheta _{k}^i = \{\nu _k=0 ,\varTheta _{k-1}^i \}\).

$$\begin{aligned} {}&\breve{\alpha }^i_{k+1|k+1}\\ \triangleq {}&\breve{p}(\varTheta _{k}^i|\mathcal {I}_{k+1})\\ \triangleq {}&p(\nu _k=0|y_{k+1}) \breve{p}(\varTheta _{k-1}^i|\mathcal {I}_{k})\\ ={}&\frac{ p(y_{k+1}|\nu _k=0)p(\nu _k=0) \breve{p}(\varTheta _{k-1}^i|\mathcal {I}_{k})}{p(y_{k+1}|\nu _k=0)p(\nu _k=0)+p(y_{k+1}|\nu _k=1)p(\nu _k=1)}\\ ={}&\frac{\psi _k^0(y_{k+1}) }{\bar{\nu }\psi _k^0(y_{k+1}) + \nu \psi _k^1(y_{k+1})} p(\nu _k=0)\breve{p}(\varTheta _{k-1}^i|\mathcal {I}_{k})\\ ={}&\frac{\psi _k^0(y_{k+1}) }{\bar{\nu }\psi _k^0(y_{k+1}) + \nu \psi _k^1(y_{k+1})} \breve{\alpha }^i_{k+1|k}\\ ={}&\lambda ^0_k\breve{\alpha }^i_{k+1|k}. \end{aligned}$$

For \(2^k+1 \le i \le 2^{k+1}\), by the same derivations,

$$\begin{aligned} \breve{\alpha }^i_{k+1|k+1} = {}&\frac{\psi _k^1(y_{k+1})p(\nu _k=1) }{\bar{\nu }\psi _k^0(y_{k+1}) + \nu \psi _k^1(y_{k+1})}\breve{\alpha }^{i-2^k}_{k|k}\\ ={}&\lambda ^1_k\breve{\alpha }^i_{k+1|k}. \end{aligned}$$

Thus (3.8b) holds for \(k+1\). The proof is completed.

Proof of Lemma 3.3

Proof

Note that \(\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}=1\). From (3.12c), by using (2.7) and (3.8),

$$\begin{aligned} \breve{x}_{k+1|k}&= \sum _{i=1}^{2^{k+1}}\breve{\alpha }^i_{k+1|k}m^i_{k+1|k} \nonumber \\&= \sum _{i=1}^{2^k}\breve{\alpha }^i_{k+1|k}m^i_{k+1|k} + \sum _{i={2^k+1}}^{2^{k+1}}\breve{\alpha }^i_{k+1|k}m^i_{k+1|k} \\&= \sum _{i=1}^{2^k}\bar{\nu }\breve{\alpha }^i_{k|k}Am^i_{k|k} + \sum _{i=1}^{2^k}\nu \breve{\alpha }^i_{k|k}(Am^i_{k|k}+Bu_k) \\&= A\breve{x}_{k|k}+ \nu Bu_k. \end{aligned}$$

Then (3.14a) is proved. (2.12a) can be proved by following the same derivations as above. Then consider \(\breve{\varPsi }_{k+1|k}\) in (3.13b), by using (2.7) and (3.8),

$$\begin{aligned} \breve{\varPsi }_{k+1|k} \triangleq&\sum _{i=1}^{2^{k+1}}\breve{\alpha }^i_{k+1|k}(m^i_{k+1|k}-\breve{x}_{k+1|k})^2_I \nonumber \\ =&\, \bar{\nu }\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}(Am^i_{k|k}-A\breve{x}_{k|k}-\nu B u_k)^2_I\end{aligned}$$
(3.20)
$$\begin{aligned}&+\nu \sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}(Am^i_{k|k}-A\breve{x}_{k|k}+\bar{\nu }B u_k)^2_I. \end{aligned}$$
(3.21)

Expanding the summation part in (3.20) as follows:

$$\begin{aligned}&\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}(Am^i_{k|k}-A\breve{x}_{k|k}-\nu B u_k)^2_I \nonumber \\ =&\, \sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k} \big ((Am^i_{k|k}-A\breve{x}_{k|k})^2_I +(\nu B u_k)^2_I -2\nu B u_k(Am^i_{k|k}-A\breve{x}_{k|k})^{\prime } \big ) \nonumber \\ =&\, A\breve{\varPsi }_{k|k}A^{\prime } +(\nu B u_k)^2_I -2\nu B u_k\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}( Am^i_{k|k}-A\breve{x}_{k|k})^{\prime }. \end{aligned}$$
(3.22)

Similarly, for the summation part in (3.21),

$$\begin{aligned}&\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}(Am^i_{k|k}-A\breve{x}_{k|k}+\bar{\nu }B u_k)^2_I\nonumber \\ =&\, A\breve{\varPsi }_{k|k}A^{\prime } +(\bar{\nu }B u_k)^2_I +2\bar{\nu }B u_k\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}( Am^i_{k|k}-A\breve{x}_{k|k})^{\prime }. \end{aligned}$$
(3.23)

Substituting (3.22) and (3.23) into (3.20) and (3.21), respectively, by some simple algebraic computations, we get

$$\begin{aligned} \breve{\varPsi }_{k+1|k}&= \bar{\nu }\left[ A\breve{\varPsi }_{k|k}A^{\prime }-2\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}\big ( Am^i_{k|k}-A\breve{x}_{k|k})(\nu B u_{k+1})^{\prime } \big )\right. \\&+\left. (\nu B u_{k+1})(\nu B u_{k+1})^{\prime } \right] \\&+\nu \left[ A\breve{\varPsi }_{k|k}A^{\prime }+2\sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}\Big ( Am^i_{k|k}-A\breve{x}_{k|k})(\bar{\nu }B u_{k+1})^{\prime } \Big )\right. \\&+\left. (\bar{\nu }B u_{k+1})(\bar{\nu }B u_{k+1})^{\prime }\right] \\&= A\breve{\varPsi }_{k|k}A^{\prime } + \bar{\nu }(\nu B u_{k+1})(\nu B u_{k+1})^{\prime } + \nu (\bar{\nu }B u_{k+1})(\bar{\nu }B u_{k+1})^{\prime }\\&= A\breve{\varPsi }_{k|k}A^{\prime } + \bar{U}_k \end{aligned}$$

where \(\bar{U}_k=\bar{\nu }\nu B u_ku_k^{\prime }B^{\prime }\). From (3.12d),

$$\begin{aligned} \breve{P}_{k+1|k}&= S_{k+1|k} + \breve{\varPsi }_{k+1|k}\\&= A(S_{k|k} + \breve{\varPsi }_{k|k})A^{\prime } +\bar{U}_k +Q\\&= A\breve{P}_{k|k}A^{\prime } +\bar{U}_k +Q. \end{aligned}$$

Hence (3.14b) is proved. By the same derivations, (2.12b) can be obtained as well.

Next, we derive \(\breve{x}_{k+1|k+1}\) and \(\breve{P}_{k+1|k+1}\). Note that \(\bar{\nu }\lambda _k^0+\nu \lambda _k^1=1\). From (3.12a), by using (2.7) and (3.8),

$$\begin{aligned} \breve{x}_{k+1|k+1}={}&\sum _{i=1}^{2^{k+1}}\breve{\alpha }^i_{k+1|k+1}m^i_{k+1|k+1} \\ ={}&\lambda _k^0 \sum _{i=1}^{2^{k}}\breve{\alpha }^i_{k+1|k} \Big (m^i_{k+1|k} + K_{k+1}\left( y_{k+1} - Cm^i_{k+1|k}\right) \Big ) \\ {}&+ \lambda _k^1 \sum _{i=2^k}^{2^{k+1}}\breve{\alpha }^i_{k+1|k} \Big (m^i_{k+1|k} + K_{k+1}\left( y_{k+1} - Cm^i_{k+1|k}\right) \Big ) \\ ={}&\bar{\nu }\lambda _k^0 \sum _{i=1}^{2^{k}}\breve{\alpha }^i_{k|k}(I-K_{k+1}C)Am^i_{k|k} \\ {}&+ \nu \lambda _k^1 \sum _{i=1}^{2^k}\breve{\alpha }^i_{k|k}(I-K_{k+1}C)(Am^i_{k|k}+Bu_k) \\ {}&+ K_{k+1}y_{k+1} \\ ={}&(I-K_{k+1}C)(A\breve{x}_{k|k} + \nu \lambda _k^1 Bu_k) + K_{k+1}y_{k+1}. \end{aligned}$$

Equation (3.14c) is proved. Consider \(\breve{\varPsi }_{k+1|k+1}\) in (3.13a), by (2.7) and (3.8),

$$\begin{aligned} {}&\breve{\varPsi }_{k+1|k+1} \nonumber \\ \triangleq {}&\sum _{i=1}^{2^{k+1}}\breve{\alpha }^i_{k+1|k+1}(m^i_{k+1|k+1}-\breve{x}_{k+1|k+1})^2_I \nonumber \\ ={}&\bar{\nu }\lambda _{k}^0\sum _{i=1}^{2^{k}}\breve{\alpha }^i_{k|k} \big ( (I - K_{k+1}C)(Am^i_{k|k} - A\breve{x}_{k|k} - \nu \lambda _k^1 Bu_k) \big )^2_I \end{aligned}$$
(3.24)
$$\begin{aligned}&+ \nu \lambda _{k}^1\sum _{i=1}^{2^{k}}\breve{\alpha }^i_{k|k}\big ( (I - K_{k+1}C)(Am^i_{k|k} + Bu_k - A\breve{x}_{k|k} - \nu \lambda _k^1 Bu_k)\big )^2_I. \end{aligned}$$
(3.25)

Expanding (3.24) and (3.25) in the same way as (3.20) and (3.21) and collecting the common terms, then we will readily have

$$\begin{aligned} \breve{\varPsi }_{k+1|k+1} = (I - K_{k+1}C)( A\breve{\varPsi }_{k|k}A^{\prime } + U_k) (I - K_{k+1}C)^{\prime } \end{aligned}$$

where \(U_k=\bar{\nu }\nu \lambda _{k}^0\lambda _{k}^1Bu_ku_k^{\prime }Bu_k^{\prime }\). From (3.12b),

$$\begin{aligned} \breve{P}_{k+1|k+1} = {}&S_{k+1|k+1} + \breve{\varPsi }_{k+1|k+1}\\ ={}&(I - K_{k+1}C)\Big ( A(S_{k|k}+\breve{\varPsi }_{k|k})A^{\prime } + U_k +Q\Big ) (I - K_{k+1}C)^{\prime }\\ {}&+ K_{k+1} R K_{k+1}^{\prime }\\ ={}&\mathbb {K}_{k+1} ( A\breve{P}_{k|k}A^{\prime } + U_k +Q )\mathbb {K}_{k+1}^{\prime } + K_{k+1} R K_{k+1}^{\prime }. \end{aligned}$$

Hence (3.14d) is proved. The proof is completed.

Proof of Lemma 3.6

Proof

(i): Proof of \(\mathbb {E}_{\mathcal {I}}[P] \le \mathbb {E}_{\mathcal {I}}[\tilde{P}]\).

In the following proof, for consistent presentation in the computation of the mathematical expectation of the random variables, we use the notation \(\int _\theta (\cdot )\text{ d }\theta \), instead of \(\sum _{\theta }\), for discrete random variable. Such treatment does not affect the result.

Denote the mean of x and \(\tilde{x}\) as \(\mu \triangleq \mathrm{{e}}(x)\) and \(\tilde{\mu } \triangleq \mathrm{{e}}(\tilde{x})\), respectively.

$$\begin{aligned} \mu ={}&\int _\theta \left( \textstyle \int _x x p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \nonumber \\ ={}&\mathbb {E}_{\theta }\Big [ \mathbb {E}_x[x|\theta ,\mathcal {I}] \big |\mathcal {I}\Big ] \end{aligned}$$
(3.26)
$$\begin{aligned} \tilde{\mu } ={}&\int _\theta \left( \int _x x p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta ) \text{ d }\theta \nonumber \\ = {}&\mathbb {E}_{\theta }\Big [ \mathbb {E}_x[\tilde{x}|\theta ,\mathcal {I}]\Big ]. \end{aligned}$$
(3.27)

As mentioned in the motivation of constructing the auxiliary estimator, we intend to present P and \(\tilde{P}\) in form like (3.4). (That is, (3.34) and (3.35)).

$$\begin{aligned} P&= \int _\theta \left( \int _x (x-\mu )^2p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \end{aligned}$$
(3.28)
$$\begin{aligned} \tilde{P}&= \int _\theta \left( \int _x (x-\tilde{\mu })^2p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta ) \text{ d }\theta . \end{aligned}$$
(3.29)

Note that in (3.27) and (3.29), the replacement of \(\tilde{x}\) with x will not affect the value of the integration. By expanding the term \((x-\mu )^2\) in (3.28) into \(x^2-2\mu x+\mu ^2\), and substituting \(\mu \) by \(\textstyle \int _\theta \left( \textstyle \int _x x p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \) in (3.26), (or immediately using (3.2)), P can be rewritten as follows.

$$\begin{aligned} P&= \int _\theta \left( \int _x x^2 p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \end{aligned}$$
(3.30)
$$\begin{aligned}&-\left( \int _\theta \left( \int _x x p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \right) ^2. \end{aligned}$$
(3.31)

Let

$$\begin{aligned} \varLambda \triangleq \int _\theta \left( \int _x xp(x|\theta ,\mathcal {I})\text{ d }x \right) ^2p(\theta |\mathcal {I}) \text{ d }\theta , \end{aligned}$$

then \(P = (3.30) -\varLambda +\varLambda -(3.31)\). Firstly collect (3.30) \(-\varLambda \),

$$\begin{aligned}&\int _\theta \left\{ \left( \int _x x^2 p(x|\theta ,\mathcal {I})\text{ d }x\right) - \left( \int _x xp(x|\theta ,\mathcal {I})\text{ d }x\right) ^2 \right\} p(\theta |\mathcal {I}) \text{ d }\theta \nonumber \\ =&\,\int _\theta \left\{ (\mathbb {E}_x[x^2|\theta ,\mathcal {I}] - (\mathbb {E}_x[x|\theta ,\mathcal {I}])^2 \right\} p(\theta |\mathcal {I}) \text{ d }\theta \nonumber \\ =&\,\int _\theta \mathrm {cov}_x(x|\theta ,\mathcal {I}) p(\theta |\mathcal {I}) \text{ d }\theta \nonumber \\ =&\,\mathbb {E}_{\theta }\big [\mathrm {cov}_x(x|\theta ,\mathcal {I}) \big |\mathcal {I}\big ]. \end{aligned}$$
(3.32)

where it follows from (3.2) that

$$\begin{aligned} \mathrm {cov}_x(x|\theta ,\mathcal {I})=\mathbb {E}_x[x^2|\theta ,\mathcal {I}] - (\mathbb {E}_x[x|\theta ,\mathcal {I}])^2. \end{aligned}$$

By the same derivation, collect \(\varLambda -(3.31)\) as follows:

$$\begin{aligned}&\int _\theta \left( \int _x xp(x|\theta ,\mathcal {I})\text{ d }x \right) ^2p(\theta |\mathcal {I}) \text{ d }\theta - \left( \int _\theta \left( \int _x xp(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \right) ^2 \nonumber \\ =&\, \int _\theta \left( \mathbb {E}_x[x|\theta ,\mathcal {I}] \right) ^2p(\theta |\mathcal {I}) \text{ d }\theta - \left( \int _\theta \mathbb {E}_x[x|\theta ,\mathcal {I}] p(\theta |\mathcal {I}) \text{ d }\theta \right) ^2 \nonumber \\ =&\, \mathbb {E}_{\theta }\big [\left( \mathbb {E}_x[x|\theta ,\mathcal {I}] \right) ^2\big |\mathcal {I}\big ] - \left( \mathbb {E}_{\theta }\big [\left( \mathbb {E}_x[x|\theta ,\mathcal {I}] \right) \big |\mathcal {I}\big ]\right) ^2 \nonumber \\ =&\, \mathrm {cov}_{\theta }\big (\mathbb {E}_x[x|\theta ,\mathcal {I}]\big |\mathcal {I}\big ). \end{aligned}$$
(3.33)

where (3.33) follows from (3.2) by viewing \(\mathbb {E}_x[x|\theta ,\mathcal {I}]\) as a function of the random variable \(\theta \).

By combining (3.32) and (3.33),

$$\begin{aligned} P&= \mathbb {E}_{\theta }\big [\mathrm {cov}_x(x|\theta ,\mathcal {I}) \big |\mathcal {I}\big ]+ \mathrm {cov}_{\theta }\big (\mathbb {E}_x[x|\theta ,\mathcal {I}]\big |\mathcal {I}\big ), \end{aligned}$$
(3.34)

and by the same way \(\tilde{P}\) can be presented as follows.

$$\begin{aligned} \tilde{P}&= \mathbb {E}_{\theta }\big [\mathrm {cov}_x(x|\theta ,\mathcal {I})\big ]+ \mathrm {cov}_{\theta }\big (\mathbb {E}_x[x|\theta ,\mathcal {I}]\big ) . \end{aligned}$$
(3.35)

Then we compare \(\mathbb {E}_{\mathcal {I}}[P]\) with \(\mathbb {E}_{\mathcal {I}}[\tilde{P}]\). Applying the equality (3.3) to the first part of (3.35), we have

$$\begin{aligned} \mathbb {E}_{\mathcal {I}}\Big [ \mathbb {E}_{\theta }\big [\mathrm {cov}_x(x|\theta ,\mathcal {I})\big ] \Big ] = \mathbb {E}_{\mathcal {I}}\Big [ \mathbb {E}_{\theta }\big [\mathrm {cov}_x(x|\theta ,\mathcal {I})\big |\mathcal {I}\big ] \Big ] , \end{aligned}$$
(3.36)

which is equal to the expectation of the first part of (3.34).

We go on to compare the expectation of their second parts. From (3.4), due to \(\mathrm {cov}( \mathrm{{e}}[X|Y] ) \ge 0\), we have \(\mathrm {cov}(X) \ge \mathrm{{e}}[\mathrm {cov}(X|Y)]\). By substituting X with \(\mathbb {E}_x[x|\theta ,\mathcal {I}]\) and Y with \(\mathcal {I}\), we have

$$\begin{aligned} \mathrm {cov}_{\theta }\big ( \mathbb {E}_x[x|\theta ,\mathcal {I}] \big ) \ge \mathbb {E}_{\mathcal {I}}\Big [ \mathrm {cov}_{\theta }\big ( \mathbb {E}_x[x|\theta ,\mathcal {I}] \big |\mathcal {I}\big ) \Big ]. \end{aligned}$$

In the preceding inequity, the left part is a function of random variable \(\mathcal {I}\), and the right part is a constant value. Taking the expectation to the both sides, the sign of the inequity remains.

$$\begin{aligned} \mathbb {E}_{\mathcal {I}}\Big [ \mathrm {cov}_{\theta }\big ( \mathbb {E}_x[x|\theta ,\mathcal {I}] \big ) \Big ]&\ge \mathbb {E}_{\mathcal {I}}\Big [ \mathrm {cov}_{\theta }\big ( \mathbb {E}_x[x|\theta ,\mathcal {I}] \big |\mathcal {I}\big ) \Big ]. \end{aligned}$$
(3.37)

In (3.37) the left part equates to the expectation of the second term of (3.35), and the right part equates to the expectation of the second term of (3.34). Combining (3.34)–(3.37), \(\mathbb {E}_{\mathcal {I}}[\tilde{P}] \ge \mathbb {E}_{\mathcal {I}}[P]\) is proved.

(ii): Proof of \(\mathbb {E}_{\mathcal {I}, y} [P_1] \le \mathbb {E}_{\mathcal {I}, y} [\breve{P}]\)

We firstly prove that \(P = \mathbb {E}_{y}[P_1]\) and \(\tilde{P}= \mathbb {E}_{y}[\breve{P}]\). Since \(P=\mathbb {E}_{y}[P|y]\) always holds, by (3.30) and (3.31)

$$\begin{aligned} P ={}&\mathbb {E}_{y}[P|y] \nonumber \\ ={}&\mathbb {E}_{y}\Big [ \int _\theta \left( \int _x x^2 p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \nonumber \\ {}&-\left( \int _\theta \left( \int _x x p(x|\theta ,\mathcal {I})\text{ d }x \right) p(\theta |\mathcal {I}) \text{ d }\theta \right) ^2 \big |y\Big ]\nonumber \\ ={}&\mathbb {E}_{y}\Big [ \int _\theta \left( \int _x x^2 p(x|\theta ,\mathcal {I},y)\text{ d }x \right) p(\theta |\mathcal {I},y) \text{ d }\theta \end{aligned}$$
(3.38)
$$\begin{aligned} {}&-\left( \int _\theta \left( \int _x x p(x|\theta ,\mathcal {I},y)\text{ d }x \right) p(\theta |\mathcal {I},y) \text{ d }\theta \right) ^2 \Big ] \\ ={}&\mathbb {E}_{y}[P_1]. \nonumber \end{aligned}$$
(3.39)

By (3.2), it is easy to check that in (3.38) and (3.39) the terms within the brackets of \(\mathbb {E}_{y}[\cdot ]\) equates \(P_1\). Following the same derivations above,

$$\begin{aligned} \tilde{P}={}&\mathbb {E}_{y}[\tilde{P}|y] \nonumber \\ ={}&\mathbb {E}_{y}\Big [ \int _\theta \left( \int _{\tilde{x}} \tilde{x}^2 p(\tilde{x}|\theta ,\mathcal {I})\text{ d }\tilde{x}\right) p(\theta ) \text{ d }\theta \nonumber \\ {}&-\left( \int _\theta \left( \int _{\tilde{x}} \tilde{x}p(\tilde{x}|\theta ,\mathcal {I})\text{ d }\tilde{x}\right) p(\theta ) \text{ d }\theta \right) ^2 \big |y\Big ]\nonumber \\ ={}&\mathbb {E}_{y}\Big [ \int _\theta \left( \int _{\tilde{x}} \tilde{x}^2 p(\tilde{x}|\theta ,\mathcal {I},y)\text{ d }\tilde{x}\right) p(\theta |y) \text{ d }\theta \end{aligned}$$
(3.40)
$$\begin{aligned} {}&-\left( \int _\theta \left( \int _{\tilde{x}} \tilde{x}p(\tilde{x}|\theta ,\mathcal {I},y)\text{ d }\tilde{x}\right) p(\theta |y) \text{ d }\theta \right) ^2 \Big ] \\ ={}&\mathbb {E}_{y}[\breve{P}]. \nonumber \end{aligned}$$
(3.41)

By viewing \(\tilde{x}\) in (3.40) and (3.41) as \(\breve{x}\), it still follows (3.2) that \(\breve{P}\) equates the terms within the brackets of \(\mathbb {E}_{y}[\cdot ]\) in (3.40) and (3.41). Due to the result \(\mathbb {E}_{\mathcal {I}}[P] \le \mathbb {E}_{\mathcal {I}}[\tilde{P}]\) as proved in (i),

$$\begin{aligned} \mathbb {E}_{\mathcal {I},y} [P_1] = \mathbb {E}_{\mathcal {I}}\Big [ \mathbb {E}_{y}[P_1] \Big ] = \mathbb {E}_{\mathcal {I}}[P] \le \mathbb {E}_{\mathcal {I}}[\tilde{P}] = \mathbb {E}_{\mathcal {I}}\Big [ \mathbb {E}_{y}[\breve{P}] \Big ] = \mathbb {E}_{\mathcal {I},y} [\breve{P}]. \end{aligned}$$

Thus, \(\mathbb {E}_{\mathcal {I},y} [P_1] \le \mathbb {E}_{\mathcal {I},y} [\breve{P}]\) is proved.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, H., Su, H., Shi, P., Shu, Z., Wu, ZG. (2017). An Auxiliary Estimator Method. In: Estimation and Control for Networked Systems with Packet Losses without Acknowledgement. Studies in Systems, Decision and Control, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-44212-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44212-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44211-2

  • Online ISBN: 978-3-319-44212-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics