Skip to main content

Galvanometer Laser Scanning: Custom-Made Input Signals for Maximum Duty Cycles in High-End Imaging Applications

  • Conference paper
  • First Online:
New Trends in Mechanism and Machine Science

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 43))

Abstract

The paper presents some of the contributions achieved in the study of galvanometer-based scanners (GSs) utilized for high-end applications. The optomechatronic aspects of this most used type of laser scanners are presented, in relationship with the high requirements of biomedical imaging, for example. The use of GSs with common input signals, such as triangular, sawtooth, and sinusoidal for domains like Optical Coherence Tomography (OCT) for example are discussed—as studied in several researches. Custom-made input signals for GSs are considered in this presentation, and the analysis made on their effect on the of GS duty cycle (i.e., on the time efficiency of the scanning process) is presented. The rigorous theoretical demonstration contradicts the previous statement in the literature, that linear plus sinusoidal input signals are the best ones. Instead, linear plus parabolic input signals were demonstrated to provide the highest possible duty cycle of such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall, G.F. (ed.): Handbook of Optical and Laser Scanning. CRC Press (2011)

    Google Scholar 

  2. Beiser, L., Johnson, B.: Scanners. In: Bass, M. (ed.) Handbook of Optics, 3rd edn, pp. 30.1–30.68. Mc. Graw-Hill Inc., (2009)

    Google Scholar 

  3. Montagu, J.: Scanners—galvanometric and resonant. In: Driggers, R.G., Hoffman, C., Driggers, R. (eds.) Encyclopedia of Optical Engineering, pp. 2465–2487. Taylor & Francis (2003)

    Google Scholar 

  4. Aylward, R.P.: Advances and technologies of galvanometer-based optical scanners. Proc. SPIE 3787, 158–164 (1999)

    Article  Google Scholar 

  5. Gadhok, J.S.: Achieving high-duty cycle sawtooth scanning with galvanometric scanners. Proc. SPIE 3787, 173–180 (1999)

    Article  Google Scholar 

  6. Rohr, B.E.: Testing high-performance galvanometer-based optical scanners. Proc. SPIE 2383, 460–469 (1995)

    Article  Google Scholar 

  7. Duma, V.-F.: On-line measurements with optical scanners: metrological aspects. Proc. SPIE 5856, 606–617 (2005)

    Article  Google Scholar 

  8. Beiser, L.: Design equations for a polygon laser scanner. Proc. SPIE 1454, 60–66 (1991)

    Article  Google Scholar 

  9. Duma, V.-F.: Novel approaches in the designing of polygon scanners. Proc. SPIE 67851Q (2007)

    Google Scholar 

  10. Duma, V.-F., Rolland, J.P., Podoleanu, A.G.: Perspectives of scanning in OCT. Proc. SPIE 7556, 7556–10 (2010)

    Google Scholar 

  11. Marshall, G.F.: Risley prism scan patterns. Proc. SPIE 3787, 74–86 (1999)

    Article  Google Scholar 

  12. Li, Y.: Third-order theory of the Risley-prism-based beam steering system. Appl. Opt. 50, 679–686 (2011)

    Article  Google Scholar 

  13. Schitea, A., Tuef, M., Duma, V.-F.: Modeling of Risley prisms devices for exact scan patterns. Proc. SPIE 8789, 878940 (2013)

    Google Scholar 

  14. Yoo, H.W., Ito, S., Schitter, G.: High speed laser scanning microscopy by iterative learning control of a galvanometer scanner. Control Eng. Prac. 50, 12–21 (2016)

    Article  Google Scholar 

  15. Mnerie, C., Duma, V.-F.: Mathematical model of a galvanometer-based scanner: simulations and experiments. Proc. SPIE 8789, 878943 (2013)

    Google Scholar 

  16. Grulkowski, I., Gorczynska, I., Szkulmowski, M., Szlag, D., Szkulmowska, A., Leitgeb, R.A., Kowalczyk, A., Wojtkowski, M.: Scanning protocols dedicated to smart velocity ranging in Spectral OCT. Opt. Express 17, 23736–23754 (2009)

    Article  Google Scholar 

  17. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., Fujimoto, J.G.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  Google Scholar 

  18. Drexler, W., Liu, M., Kumar, A., Kamali, T., Unterhuber, A., et al.: Optical coherence tomography today: speed, contrast, and multimodality. J. Biomed. Opt. 19(7), 071412 (2014)

    Article  Google Scholar 

  19. Podoleanu, AGh, Rosen, R.B.: Combinations of techniques in imaging the retina with high resolution. Prog. Retinal Eye Res. 27, 464–499 (2008)

    Article  Google Scholar 

  20. Duma, V.-F., Lee, K.-S., Meemon, P., Rolland, J.P.: Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT. Appl. Opt. 50, 5735–5749 (2011)

    Article  Google Scholar 

  21. Duma, V.-F., Tankam, P., Huang, J., Won, J.J., Rolland, J.P.: Optimization of galvanometer scanning for optical coherence tomography. Appl. Opt. 54, 5495–5507 (2015)

    Article  Google Scholar 

  22. Duma, V.-F.: Optimal scanning function of a galvanometer scanner for an increased duty cycle. Opt. Eng. 49, 103001 (2010)

    Article  Google Scholar 

  23. Perju, D.: Mechanisms for Fine Mechanics (in Romanian). Politehnica (1991)

    Google Scholar 

  24. http://www.cambridgetechnology.com/

  25. Mnerie, C., Preitl, S., Duma, V.-F.: Classical PID versus predictive control solutions for a galvanometer based scanner. In: SACI: 10th IEEE International Symposium on Applied Computational Intelligence and Informatics, pp. 349–353 (2015)

    Google Scholar 

  26. Braaf, B., Vermeer, K.A., Vienola, K.V., de Boer, J.F.: Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt. Express 20, 20516–20534 (2012)

    Article  Google Scholar 

  27. Rolland, J.P., Meemon, P., Murali, S., Thompson, K.P., Lee, K.-S.: Gabor-based fusion technique for optical coherence microscopy. Opt. Express 18, 3632–3642 (2010)

    Article  Google Scholar 

  28. Demian, D., Duma, V.-F., Sinescu, C., Negrutiu, M.L., Cernat, R., Topala, F.I., Hutiu, Gh, Bradu, A., Podoleanu, AGh: Design and testing of prototype handheld scanning probes for optical coherence tomography. J. Eng. Med. 228(8), 743–753 (2014)

    Article  Google Scholar 

  29. Duma, V.-F., Dobre, G., Demian, D., Cernat, R., Sinescu, C., Topala, F.I., Negrutiu, M.L., Hutiu, Gh, Bradu, A., Podoleanu, AGh: Handheld scanning probes for optical coherence tomography. Rom. Rep. Phys. 67(4), 1346–1358 (2015)

    Google Scholar 

  30. Jung, W., Kim, J., Jeon, M., Chaney, E.J., Stewart, C.N., Boppart, S.A.: Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans. Biomed. Eng. 58, 741–744 (2011)

    Article  Google Scholar 

  31. Lu, C.D., Kraus, M.F., Potsaid, B., Liu, J.J., Choi, W., Jayaraman, V., Cable, A.E., Hornegger, J., Duker, J.S., Fujimoto, J.G.: Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed. Opt. Express 5, 293–311 (2014)

    Article  Google Scholar 

  32. Sinescu, C., Negrutiu, M.L., Bradu, A., Duma, V.-F., Podoleanu, A.G.: Noninvasive quantitative evaluation of the dentin layer during dental procedures using optical coherence tomography. Comput. Math. Methods Med. Paper ID 709076 (2015)

    Google Scholar 

  33. Oancea, R., Bradu, A., Sinescu, C., Negru, R.M., Negrutiu, M.L., Antoniac, I., Duma, V.-F., Podoleanu, A.G.H.: Assessment of the sealant/tooth interface using optical coherence tomography. J. Adhes. Sci. Technol. 29, 49–58 (2015)

    Article  Google Scholar 

  34. Hutiu, G., Duma, V.-F., Demian, D., Bradu, A., Podoleanu, A.G.H.: Surface imaging of metallic material fractures using optical coherence tomography. Appl. Opt. 53, 5912–5916 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is currently supported by a Partnership Grant of the Romanian National Authority for Scientific Research, CNDI–UEFISCDI Project PN-II-PT-PCCA-2011-3.2-1682 (http://3om-group-optomechatronics.ro/). Previous support includes Fulbright Senior Research Grant no. 474/2009 of the US Department of State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgil-Florin Duma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Duma, VF. (2017). Galvanometer Laser Scanning: Custom-Made Input Signals for Maximum Duty Cycles in High-End Imaging Applications. In: Wenger, P., Flores, P. (eds) New Trends in Mechanism and Machine Science. Mechanisms and Machine Science, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-44156-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44156-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44155-9

  • Online ISBN: 978-3-319-44156-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics