Skip to main content

Some Mechanical Problems in a Geometric Setting

  • Chapter
  • First Online:
Classical Mechanics
  • 3362 Accesses

Abstract

The Maupertuis variational principle is the oldest least-action principle of classical mechanics. Its precise formulation was given by Euler and Lagrange; for its history, see Yourgrau and Mandelstam (Variational Principles in Dynamics and Quantum Theory. Pitman/W.B. Sanders, London/Philadelphia, 1968). However, the traditional formulation (as a variational problem subject to the constraint that only the motions with fixed total energy are considered), remained problematic, as emphasized by V. Arnold (double citation): “In his Lectures on Dynamics (1842–1843), C. Jacobi commented: “In almost all textbooks, even the best, this Principle is presented in such a way that it is impossible to understand”. I do not choose to break with tradition” (Arnold, Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation (6.7) can also be taken as a starting point for obtaining \(\tilde{L}\).

  2. 2.

    More exactly, the notions of a geodesic and a minimal length line coincide only in the Riemann space with a Riemann connection. Here we do not distinguish these notions. They are discussed in more detail in the following sections.

  3. 3.

    Detailed discussion of the coordinate formulation of Riemann geometry for non-mathematicians can be found, for example, in [15]. For the coordinate-free formulation, see [35].

  4. 4.

    Note that this definition does not mention coordinates, representing an example of the coordinate-free definition of differential geometry.

  5. 5.

    The line was called the trajectory in Sects. 6.1 and 6.2.

  6. 6.

    Accordingly, any vector proportional to ξ is called a tangent vector to the line determined by the curve.

  7. 7.

    We consider only torsion-free affine connections.

  8. 8.

    Parallel transport of the covariantly constant field along any line takes it into itself, see below.

  9. 9.

    Components ξ a(q b) at the point q b = q b(τ) are defined as ξ a(q b) ≡ ξ a(τ).

  10. 10.

    Let us point out that Eq. (6.79) itself cannot be rewritten in terms of D b .

  11. 11.

    Note that they do not depend on α or on the length of ξ a.

  12. 12.

    N ab are known as the coefficients of second quadratic form of the surface.

  13. 13.

    For the case of the Riemann connection, dynamical parametrization is precisely the natural parametrization, see page 216.

  14. 14.

    In the flat limit the sequence y (1) μ, x μ, y (2) μ of events can be associated with emission, reflection and absorbtion of a photon with the propagation law ds = 0. Then the middle point (6.148) should be considered simultaneous with x 0.

Bibliography

  1. E. Cartan, Leçons sur les Invariants Intégraux (Hermann, Paris, 1922)

    MATH  Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989)

    Book  Google Scholar 

  3. A.A. Kirillov, Elements of the Theory of Representations (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  4. V.P. Maslov, M.V. Fedoruk, Semiclassical Approximation in Quantum Mechanics (D. Reidel Publishing Company, Dordrecht, 1981)

    Book  Google Scholar 

  5. A.T. Fomenko, Symplectic Geometry (Gordon and Breach, New York, 1988)

    MATH  Google Scholar 

  6. J.M. Souriau, Structure des systémes dynamiques (Dund, Paris, 1970)

    MATH  Google Scholar 

  7. J.E. Marsden, R.H. Abraham, Foundations of Mechanics, 2nd edn. (Benjamin-Cummings Publishing Company, Inc., Reading, 1978)

    MATH  Google Scholar 

  8. P.A.M. Dirac, Can. J. Math. 2, 129 (1950); Lectures on Quantum Mechanics (Yeshiva University, New York, 1964)

    Article  MathSciNet  Google Scholar 

  9. A.A. Slavnov, L.D. Faddeev, Introduction in Quantum Theory of Gauge Fields (Nauka, Moscow, 1978)

    MATH  Google Scholar 

  10. D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  11. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  12. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, 1980)

    MATH  Google Scholar 

  13. L.D. Landau, E.M. Lifshits, Mechanics (Pergamon Press, Oxford, 1976)

    MATH  Google Scholar 

  14. F.R. Gantmacher, Lectures on Analytical Mechanics (MIR, Moscow, 1970)

    Google Scholar 

  15. S. Weinberg, Gravitation and Cosmology (Willey, New York, 1972)

    Google Scholar 

  16. L.D. Landau, E.M. Lifshits, The Classical Theory of Fields (Pergamon Press, Oxford, 1980)

    Google Scholar 

  17. W. Pauli, Theory of Relativity (Pergamon Press, Oxford, 1958)

    MATH  Google Scholar 

  18. P.G. Bergmann, Introduction to the Theory of Relativity (Academic Press, New York, 1967)

    Google Scholar 

  19. V.A. Ugarov, Special Theory of Relativity (Mir Publishers, Moscow, 1979)

    Google Scholar 

  20. R. Feynman, P. Leighton, M. Sands, The Feynman Lectures on Physics: Commemorative Issue, vol. 2 (Addison-Wesley, Reading, 1989)

    Google Scholar 

  21. H. Hertz, The Principles of Mechanics Presented in a New Form (Dover Publications, New York, 1956)

    Google Scholar 

  22. P.S. Wesson, Five-Dimensional Physics: Classical and Quantum Consequences of Kaluza-Klein Cosmology (World Scientific, Singapore, 2006)

    Book  MATH  Google Scholar 

  23. V.S. Vladimirov, Equations of Mathematical Physics, 3rd edn. (Izdatel’stvo Nauka, Moscow, 1976), 528p. In Russian. (English translation: Equations of Mathematical Physics, ed. by V.S. Vladimirov (M. Dekker, New York, 1971)

    Google Scholar 

  24. A.A. Deriglazov, Phys. Lett. B 626 243–248 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Ehrenberg, R.E. Siday, Proc. R. Soc. Lond. B 62, 8 (1949)

    Article  Google Scholar 

  26. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Schrödinger, Ann. Phys. 81, 109 (1926); See also letters by Shrödinger to Lorentz in: K. Przibram, Briefe zür Wellenmechanik (Wien, 1963)

    Article  Google Scholar 

  28. H. von Helmholtz, J. Math. C, 151 (1886)

    Google Scholar 

  29. K.S. Stelle, Phys. Rev. D16, 953–969 (1977)

    ADS  MathSciNet  Google Scholar 

  30. R.P. Woodard, How Far Are We from the Quantum Theory of Gravity? arXiv:0907.4238 [gr-qc]

    Google Scholar 

  31. M.V. Ostrogradsky, Mem. Ac. St. Petersbourg VI 4, 385 (1850)

    Google Scholar 

  32. D. Bohm, Phys. Rev. 85, 166, 180 (1952)

    Article  ADS  Google Scholar 

  33. F. Mandl, Introduction to Quantum Field Theory (Interscience Publishers Inc., New York, 1959)

    Google Scholar 

  34. W. Yourgrau, S. Mandelstam, Variational Principles in Dynamics and Quantum Theory (Pitman/W. B. Sanders, London/Philadelphia, 1968)

    MATH  Google Scholar 

  35. R.M. Wald, General Relativity (The University of Chicago Press, Chicago/London, 1984)

    Book  MATH  Google Scholar 

  36. P.A.M. Dirac, Quantum Mechanics, 4th edn. (Oxford University Press, London, 1958)

    MATH  Google Scholar 

  37. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill Book Company, New York, 1964)

    MATH  Google Scholar 

  38. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986)

    Book  MATH  Google Scholar 

  39. J.L. Anderson, P.G. Bergmann, Phys. Rev. 83, 1018 (1951); P.G. Bergmann, I. Goldberg, Phys. Rev. 98, 531 (1955)

    Google Scholar 

  40. A.A. Deriglazov, Phys. Lett. A 373 3920–3923, (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  42. F.A. Berezin, M.S. Marinov, JETP Lett. 21, 320 (1975); Ann. Phys. 104, 336 (1977)

    Google Scholar 

  43. V.A. Borokhov, I.V. Tyutin, Phys. At. Nucl. 61, 1603 (1998); Phys. At. Nucl. 62, 10 (1999)

    Google Scholar 

  44. D.M. Gitman, I.V. Tyutin, Int. J. Mod. Phys. A 21, 327 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. A.A. Deriglazov, K.E. Evdokimov, Int. J. Mod. Phys. A 15, 4045 (2000)

    ADS  MathSciNet  Google Scholar 

  46. A.A. Deriglazov, J. Math. Phys. 50, 012907 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Henneaux, C. Teitelboim, J. Zanelli, Nucl. Phys. B 332, 169 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.A. Deriglazov, Z. Kuznetsova, Phys. Lett. B 646, 47 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Weinberg, The Quantum Theory of Fields, vol. 1 (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  50. S. Weinberg, Lectures on Quantum Mechanics, vol. 1 (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  51. J. Frenkel, Die elektrodynamik des rotierenden elektrons. Z. Phys 37, 243 (1926)

    Article  ADS  MATH  Google Scholar 

  52. L.H. Thomas, The kinematics of an electron with an axis. Philos. Mag. J. Sci. 3 S.7, No.13, 1 (1927)

    Google Scholar 

  53. M. Mathisson, Neue mechanik materieller systeme. Acta Phys. Polon. 6, 163 (1937); Republication: Gen. Rel. Grav. 42, 1011 (2010)

    Google Scholar 

  54. A. Papapetrou, Spinning test-particles in general relativity. I. Proc. R. Soc. Lond. A 209, 248 (1951)

    Google Scholar 

  55. W.M. Tulczyjew, Motion of multipole particles in general relativity theory binaries. Acta Phys. Polon. 18, 393 (1959)

    MathSciNet  MATH  Google Scholar 

  56. W.G. Dixon, A covariant multipole formalism for extended test bodies in general relativity. Nuovo Cimento 34, 317 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  57. F.A.E. Pirani, Acta. Phys. Polon. 15, 389 (1956)

    ADS  MathSciNet  Google Scholar 

  58. H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968)

    Google Scholar 

  59. A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles (MacMillan, New York, 1964)

    Google Scholar 

  60. I.B. Khriplovich, A.A. Pomeransky, Equations of motion of spinning relativistic particle in external fields. J. Exp. Theor. Phys. 86, 839 (1998)

    Article  ADS  Google Scholar 

  61. I.L. Buchbinder, S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace (Institute of Physics Publishing, Bristol and Philadelphia, 1995/1998)

    Google Scholar 

  62. R.D. Pisarski, Theory of curved paths. Phys. Rev. D 34, 670 (1986)

    Google Scholar 

  63. A.A. Deriglazov, A. Nersessian, Rigid particle revisited: extrinsic curvature yields the Dirac equation. Phys. Lett. A 378, 1224–1227 (2014)

    Google Scholar 

  64. E. Schrödinger, Sitzunger. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930)

    Google Scholar 

  65. R.P. Feynman, Quantum Electrodynamics (W.A. Benjamin, New York, 1961)

    MATH  Google Scholar 

  66. M.H.L. Pryce, The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 195, 62 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. L.L. Foldy, S.A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950)

    Article  ADS  MATH  Google Scholar 

  68. A.A. Deriglazov, A.M. Pupasov-Maksimov, Geometric constructions underlying relativistic description of spin on the base of non-grassmann vector-like variable. SIGMA 10, 012 (2014)

    MathSciNet  MATH  Google Scholar 

  69. E. Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40 (1), 149 (1939)

    Google Scholar 

  70. V. Bargmann, E.P. Wigner, Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. Sci. USA 34 (5), 211 (1948)

    Google Scholar 

  71. A.J. Hanson, T. Regge, The relativistic spherical top. Ann. Phys. 87 (2), 498 (1974)

    Google Scholar 

  72. S.S. Stepanov, Thomas precession for spin and for a rod. Phys. Part. Nucl. 43, 128 (2012)

    Article  Google Scholar 

  73. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  74. A. Staruszkiewicz, Fundamental relativistic rotator. Acta Phys. Polon. B Proc. Suppl. 1, 109 (2008)

    Google Scholar 

  75. A.A. Deriglazov, A.M. Pupasov-Maksimov, Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung. Nucl. Phys. B 885, 1 (2014)

    Google Scholar 

  76. A. Trautman, Lectures on general relativity. Gen. Rel. Grav. 34, 721 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  77. A.A. Deriglazov, A. Pupasov-Maksimov, Relativistic corrections to the algebra of position variables and spin-orbital interaction. Phys. Lett. B 761, 207 (2016)

    Google Scholar 

  78. A.A. Deriglazov, A.M. Pupasov-Maksimov, Lagrangian for Frenkel electron and position‘s non-commutativity due to spin. Eur. Phys. J. C 74, 3101 (2014)

    Article  Google Scholar 

  79. R.P. Feynman, M. Gell-Mann, Theory of the Fermi interaction. Phys. Rev. 109, 193 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. W. Guzmán Ramírez, A.A. Deriglazov, A.M. Pupasov-Maksimov, Frenkel electron and a spinning body in a curved background. J. High Energy Phys. 1403, 109 (2014)

    Article  ADS  Google Scholar 

  81. W.G. Ramirez, A.A. Deriglazov, Lagrangian formulation for Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. Phys. Rev. D 92, 124017 (2015)

    Google Scholar 

  82. A.A. Deriglazov, Lagrangian for the Frenkel electron. Phys. Lett. B 736, 278 (2014)

    Article  ADS  MATH  Google Scholar 

  83. J. Magueijo, L. Smolin, Gravity’s rainbow. Class. Quantum Gravity 21, 1725 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. J.B. Conway, A Course in Functional Analysis (Springer, Berlin, 1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deriglazov, A. (2017). Some Mechanical Problems in a Geometric Setting. In: Classical Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-44147-4_6

Download citation

Publish with us

Policies and ethics