Skip to main content

Tissue-Engineered Maxillofacial Reconstruction: Focus on Bone

  • Chapter
  • First Online:
Contemporary Oral Oncology

Abstract

There are two main principles for maxillofacial reconstruction. The reconstructive surgery should provide form and enable function of oromaxillofacial (OMF) region. The facial skeleton has an extreme complex structure, and reconstruction should restore volume, shape, bone continuity and symmetry of bone skeleton. On the other hand, OMF soft and hard tissues enable several functions like mimics, mastication, swallowing and articulation. The reconstruction should be considered as marriage of both aesthetic and reconstructive objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literature

  1. Wexler A. Posttraumatic facial restoration: a philosophy of care. J Craniofac Surg. 2009;20:12–4.

    Article  Google Scholar 

  2. D’Aquino R, De Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18:75–83.

    Article  Google Scholar 

  3. Lee J, Sung HM, Jang JD, et al. Successful reconstruction of 15-cm segmental defects by bone marrow stem cells and resected autogenous bone graft in central hemangioma. J Oral Maxillofac Surg. 2010;68:188–94.

    Article  Google Scholar 

  4. Stoor P, Suomalainen A, Lindqvist C, Mesimäki K, Danielsson D, Westermark A, Kontio RK. Rapid prototyped patient specific implants for reconstruction of orbital wall defects. J Craniomaxillofac Surg. 2014;42(8):1644–9.

    Article  Google Scholar 

  5. Fiegel HC, Lange C, Kneser U, et al. Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med. 2006;10:577–87.

    Article  CAS  Google Scholar 

  6. Chenard KE, Teven CM, He TC, Reid RR. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol. 2012;2012:1–14.

    Article  Google Scholar 

  7. Abukawa H, Zhang W, Young CS, et al. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg. 2009;67:335–47.

    Article  Google Scholar 

  8. Grayson WL, Fröhlich M, Yeager K, et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci U S A. 2010;107:3299–304.

    Article  CAS  Google Scholar 

  9. Sándor GK, Tuovinen VJ, Wolff J, et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71:938–50.

    Article  Google Scholar 

  10. Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, Mannerström B, Patrikoski M, Seppänen R, Miettinen S, Rautiainen M, Öhman J. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530–40. doi: 10.5966/sctm.2013–0173.

    Google Scholar 

  11. Zétola A, Ferreira FM, Larson R, Shibli JA. Recombinant human bone morphogenetic protein-2 (rhBMP-2) in the treatment of mandibular sequelae after tumor resection. Oral Maxillofac Surg. 2011;15:169–74.

    Article  Google Scholar 

  12. Desai SC, Sclaroff A, Nussenbaum B. Use of recombinant human bone morphogenetic protein 2 for mandible reconstruction. JAMA Facial Plast Surg. 2013;15:204–9.

    Article  Google Scholar 

  13. Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg. 2008;66:616–24.

    Article  Google Scholar 

  14. Hart KL, Bowles D. Reconstruction of alveolar defects using titanium-reinforced porous polyethylene as a containment device for recombinant human bone morphogenetic protein 2. J Oral Maxillofac Surg. 2012;70:811–20.

    Article  Google Scholar 

  15. Mesimäki K, Lindroos B, Törnwall J, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38:201–9.

    Article  Google Scholar 

  16. Ciocca L, Mazzoni S, Fantini M, et al. CAD/CAM guided secondary mandibular reconstruction of a discontinuity defect after ablative cancer surgery. J Craniomaxillofac Surg. 2012;40:e511–5.

    Article  Google Scholar 

  17. Logan H, Wolfaardt J, Boulanger P, et al. Exploratory benchtop study evaluating the use of surgical design and simulation in fibula free flap mandibular reconstruction. J Otolaryngol Head Neck Surg. 2013;42:2–9.

    Article  Google Scholar 

  18. Ciocca L, Donati D, Fantini M, et al. CAD–CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results. J Biomater Appl. 2013;28:207–18.

    Article  CAS  Google Scholar 

  19. Levine JP, Bae JS, Soares M, et al. Jaw in a day: total maxillofacial reconstruction using digital technology. Plast Reconstr Surg. 2013;131:1386–91.

    Article  CAS  Google Scholar 

  20. Cha JK, Park JC, Jung UW, Kim CS, Cho KS, Choi SH. Case series of maxillary sinus augmentation with biphasic calcium phosphate: a clinical and radiographic study. J Periodontal Implant Sci. 2011;41(2):98–104.

    Article  Google Scholar 

  21. Lindgren C, Mordenfeld A, Hallman M. A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with synthetic biphasic calcium phosphate or deproteinized bovine bone. Clin Implant Dent Relat Res. 2012;14(1):41–50.

    Article  Google Scholar 

  22. Pandit N, Gupta R, Gupta S. A comparative evaluation of biphasic calcium phosphate material and bioglass in the treatment of periodontal osseous defects: a clinical and radiological study. J Contemp Dent Pract. 2010;11(2):025–32.

    Article  Google Scholar 

  23. Piitulainen JM, Kauko T, Aitasalo KM, Vuorinen V, Vallittu PK, Posti JP. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015;83:708. pii: S1878-8750(15)00036-4.

    Article  Google Scholar 

  24. Ioannou AL, Kotsakis GA, Kumar T, Hinrichs JE, Romanos G. Evaluation of the bone regeneration potential of bioactive glass in implant site development surgeries: a systematic review of the literature. Clin Oral Investig. 2015;19(2):181–91.

    Article  Google Scholar 

  25. Yamada Y, Ito K, Nakamura S, et al. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant. 2011;20:1003–13.

    Article  Google Scholar 

  26. Xu H, Han D, Dong JS, et al. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. Int J Med Robot. 2010;6:66–72.

    Article  Google Scholar 

  27. Amirian J, Linh NT, Min YK, Lee BT. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int J Biol Macromol. 2015;76:10–24. doi:10.1016/j.ijbiomac.2015.02.021. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  28. Gothard D, Smith EL, Kanczler JM, Rashidi H, Qutachi O, Henstock J, Rotherham M, El Haj A, Shakesheff KM, Oreffo RO. Tissue engineered bone using select growth factors: a comprehensive review of animal studies and clinical translation studies in man. Eur Cell Mater. 2014;28:166–207; discussion 207–8.

    Article  CAS  Google Scholar 

  29. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  Google Scholar 

  30. Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg. 2004;113:585–94.

    Article  Google Scholar 

  31. Matthews SJ. Biological activity of bone morphogenetic proteins (BMP’s). Injury. 2005;36 Suppl 3:S34–7.

    Article  Google Scholar 

  32. Samartzis D, Khanna N, Shen FH, An HS. Update on bone morphogenetic proteins and their application in spine surgery. J Am Coll Surg. 2005;200:236–48.

    Article  Google Scholar 

  33. Mendonca JJ, Juiz-Lopez P. Regenerative facial reconstruction of terminal stage osteoradionecrosis and other advanced craniofacial diseases with adult cultured stem and progenitor cells. Plast Reconstr Surg. 2010;126:1699–709.

    Article  CAS  Google Scholar 

  34. Tuomi J, Paloheimo KS, Vehviläinen J, et al. A novel classification and online platform for planning and documentation of medical applications of additive manufacturing. Surg Innov. 2014;9:45–8.

    Google Scholar 

  35. Warnke PH, Springer IN, Wiltfang J, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70.

    Article  CAS  Google Scholar 

  36. Matsuo A, Chiba H, Takahashi H, et al. Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray for mandibular reconstruction. Odontology. 2010;98:85–8.

    Article  Google Scholar 

  37. Kokemueller H, Spalthoff S, Nolff M, et al. Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg. 2010;39:379–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riitta Seppänen-Kaijansinkko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seppänen-Kaijansinkko, R., Kontio, R. (2017). Tissue-Engineered Maxillofacial Reconstruction: Focus on Bone. In: Kuriakose, M.A. (eds) Contemporary Oral Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-43854-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43854-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43852-8

  • Online ISBN: 978-3-319-43854-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics