Skip to main content

A Thermodynamic Account of the Emergence of Organised Matter

  • Chapter
  • First Online:
Evolution and Transitions in Complexity

Abstract

The preceding chapters of this book focus on complexity, evolution and life. Relatively little attention is paid to underlying mechanisms. This is the reason why the current chapter focuses predominantly on mechanisms that can explain the organisation of complex systems, either operators or interaction systems. The main causes of organisation are sought in the intrinsic motion of fundamental particles at temperatures above absolute zero, and the capacity of bonds between particles to form and break. Such processes are analysed from a thermodynamic perspective, focusing on the degradation of free energy and the occupation of accessible microstates. Both the degradation of free energy and the occupation of accessible microstates play a role during every next step in the Operator Hierarchy. Accessible microstates are furthermore used for calculating the contributions of DNA and of the brain to complexity on earth, as well as for calculating the probability that a pattern of Darwinian evolution occurs. In Sect. 14.3 relationships are discussed with existing literature.

“Who was right, Darwin or Carnot?” (Capra 1996, p 48).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Annila A (2010) All in action. Entropy 12:2333–2358

    Article  CAS  Google Scholar 

  • Bailly F, Longo G (2009) Biological organization and anti-entropy. J Biol Syst 17:63–96

    Article  CAS  Google Scholar 

  • Bejan A (1997) Advanced engineering thermodynamics. Wiley, New York

    Google Scholar 

  • Bejan A, Zane JP (2012) Design in nature. Doubleday, Toronto

    Google Scholar 

  • Bejan A, Lorente S (2004) The constructal law and the thermodynamics of flow systems with configuration. Int J Heat Mass Transf 47:3203–3214

    Article  Google Scholar 

  • Bejan A, Lorente S (2006) Constructal theory of generation of configuration in nature and engineering. J Appl Phys 100:041301. doi:10.1063/1.2221896 (27 pages)

    Article  Google Scholar 

  • Bejan A, Marsden JH (2009) The constructal unification of biological and geophysical design. Phys Life Rev 6:85–102

    Article  PubMed  Google Scholar 

  • Bejan A, Lorente S (2010) The constructal law of design and evolution in nature. Philos Trans R Soc B 365:1335–1347

    Google Scholar 

  • Boltzmann L (1866) Üher die mechanische Beduetung des Zweiten Hauptsatzes der Wärmetheorie. Wiener Berichte 53:195–220

    Google Scholar 

  • Bickhard M, Campbell D (2003) Variations in variation and selection: The ubiquity of the variation-and-selective-retention ratchet in emergent organizational complexity. Found Sci 8:215–282

    Google Scholar 

  • Branscomb E, Russell MJ (2013) Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim Biophys Acta 1827:62–78

    Google Scholar 

  • Brooks DR, Wiley EO (1986) Evolution as entropy. Toward a unified theory of biology. University of Chicago Press, Chicago

    Google Scholar 

  • Capra F (1996) The web of life: a new scientific understanding of living systems. Anchor books, New York

    Google Scholar 

  • Chaisson EJ (2001) Cosmic evolution: the rise of complexity in nature. Harvard University Press, Cambridge

    Google Scholar 

  • Chaisson EJ (2011) Energy rate density. II. Probing further a new complexity metric. Complexity 17:44–63

    Google Scholar 

  • Checkland P, Scholes J (1990) Soft systems methodology in action. John Wiley & Sons Ltd, Chichester, West Sussex, England

    Google Scholar 

  • Clausius R (1865) The mechanical theory of heat—with its applications to the steam engine and to physical properties of bodies. John van Voorst, London, MDCCCLXVII

    Google Scholar 

  • Close F (1983) The cosmic onion: quarks and the nature of the universe. Heinemann Educational, London

    Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, New York

    Book  Google Scholar 

  • Gánti T (1971) The principle of life (in Hungarian). Gondolat, Budapest

    Google Scholar 

  • Gánti T (2003a) Theoretical foundation of fluid machineries, vol 1, Chemoton theory. Kluwer, New York

    Google Scholar 

  • Gánti T (2003b) Theory of living systems, vol 2, Chemoton theory. Kluwer, New York

    Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. doi:10.3389/neuro.09.031.2009

    PubMed  PubMed Central  Google Scholar 

  • Hunter Tow D (1998) The future of life: meta-evolution. A unified theory of evolution. Xlibris, Corp., Lewiston, NY

    Google Scholar 

  • Holdaway RJ, Sparrow AD, Coomes DA (2010) Trends in entropy production during ecosystem development in the Amazon Basin. Philos Trans R Soc B 365:1437–1447

    Article  Google Scholar 

  • Jagers op Akkerhuis GAJM (2010) Towards a hierarchical definition of life, the organism and death. Found Sci 15:245–262

    Article  Google Scholar 

  • Jagers op Akkerhuis GAJM (2012) The pursuit of complexity. The utility of biodiversity from an evolutionary perspective. KNNV, Utrecht

    Google Scholar 

  • Jagers op Akkerhuis GAJM (2014) General laws and centripetal science. Eur Rev 22:113–144

    Article  Google Scholar 

  • Jagers op Akkerhuis GAJM, Damgaard CF (1999) Using resource dominance to explain and predict evolutionary success. Oikos 87:609–614

    Article  Google Scholar 

  • Jagers op Akkerhuis GAJM, van Straalen NM (1999) Operators, the Lego-bricks of nature: evolutionary transitions from fermions to neural networks. World Futures 53:329–345

    Article  Google Scholar 

  • Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organisation and selection in evolution. Oxford University Press, Oxford (709 pp)

    Google Scholar 

  • Kay JJ (1989) A thermodynamic perspective of the self-organization of living systems. In: Ledington PWJ (ed), Proceedings of the 33rd Annual Meeting of the International Society for the System Sciences, Edinburgh, vol 3. pp 24–30

    Google Scholar 

  • Kleidon A (2009) Nonequilibrium thermodynamics and maximum entropy production in the Earth system. Applications and implications. Naturwissenschaften 96:653–677

    Article  CAS  PubMed  Google Scholar 

  • Kleidon A, Yadvinder M, Cox PM (2010) Maximum entropy production in environmental and ecological systems. Philos Trans R Soc B 365:1297–1302

    Article  Google Scholar 

  • Kurzweil R (1999) The age of the spiritual machines. When computers exceed human intelligence. Viking, New York

    Google Scholar 

  • Lambert FL (1999) Shuffled cards, messy desks, and disorderly dorm rooms—examples of entropy increase? Nonsense! J Chem Educ 76:1385–1387

    Article  CAS  Google Scholar 

  • Lambert FL (2002) Entropy is simple, qualitatively. J Chem Educ 79:1241–1246

    Article  CAS  Google Scholar 

  • Lambert FL (2007) Configurational entropy revisited. J Chem Educ 84:1548–1550

    Google Scholar 

  • Lambert FL (2011) Entropy in general chemistry. Retreived from http://entropysite.oxy.edu/wiki_entropy.html

  • Lane N (2010) Why are cells powered by proton gradients? Nature Educ 3:18

    Google Scholar 

  • Layzier D (1990) Cosmogenesis. The growth of order in the universe. Oxford University Press, Oxford

    Google Scholar 

  • Lotka AJ (1922) Contribution to the energetics of evolution. Proc Natl Acad Sci U S A 8:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotka AJ (1945) The law of evolution as a maximal principle. Hum Biol 17:167–194

    Google Scholar 

  • Lovall JC, Holbo HR (1989) Measurements of short term thermal responses of coniferous forest canopies using thermal scanner data. Remote Sens Environ 27:1–10

    Google Scholar 

  • Märkelä T, Annila A (2010) Natural patterns of energy dispersal. Phys Life Rev 7:477–498

    Google Scholar 

  • Milnor J (1985) On the concept of attractor. Comm Math Phys 99:177–195

    Article  Google Scholar 

  • Noether E (1918) Invariante Variations probleme. Nachr D König Gesellsch D Wiss Zu Göttingen, Math-phys Klasse 1918:235–257

    Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos. Man’s new dialogue with nature. Bantam, New York

    Google Scholar 

  • Pross A (2003) The driving force for life’s emergence: kinetic and thermodynamic considerations. J Theor Biol 220:393–406

    Article  PubMed  Google Scholar 

  • Russell MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Philos Trans R Soc Lond B Biol Sci 368(1622):20120254

    Article  PubMed  PubMed Central  Google Scholar 

  • Salthe SN (1993) Development and evolution: complexity and change in biology. MIT, Cambridge, MA

    Google Scholar 

  • Salthe SN, Fuhrman G (2005) The cosmic bellows: the big bang and the second law. Cosmos Hist 1:295–318

    Google Scholar 

  • Schneider ED, Kay JJ (1994) Life as a manifestation of the second law of thermodynamics. Math Comput Model 19:25–48

    Article  Google Scholar 

  • Schneider ED, Kay JJ (1995) Order from disorder: the thermodynamics of complexity in biology. In: Murphy MP, O’Neil LAJ (eds) What is life: the next fifty years. Reflections on the future of biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Schrödinger E (1944) What is life? Cambridge University Press, Cambridge

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Chicago

    Google Scholar 

  • Spier F (1996) The structure of big history: from the big bang until today. Amsterdam University Press, Amsterdam

    Book  Google Scholar 

  • Spier F (2011) Big history and the future of humanity. Wiley Blackwell, Malden, MA

    Google Scholar 

  • Styer DF (2008) Entropy and evolution. Am J Phys 76:1031–1033

    Article  CAS  Google Scholar 

  • Swenson R (1988) Emergence and the principle of maximum entropy production: multi-level system Meeting of the International Society for General Systems Research, 32. Theory, evolution, and non-equilibrium thermodynamics. Proceedings of the 32nd Annual Meeting of the International Society for General Systems Research, 32

    Google Scholar 

  • Swenson R (1989) Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution. Syst Res 6:187–197

    Article  Google Scholar 

  • Swenson R (1997) Autocatakinetics, evolution, and the law of maximum entropy production: a principled foundation toward the study of human ecology. Adv Hum Ecol 6:1–46

    Google Scholar 

  • Tuli JK (2005) Nuclear wallet cards, 7th edn. Brookhaven National Laboratory, US National Nuclear Data Center, Upton, NY

    Google Scholar 

  • United Nations (1992) Convention on biological diversity. United Nations, New York

    Google Scholar 

  • Volk T, Pauluis O (2010) It is not the entropy you produce, rather, how you produce it. Philos Trans R Soc B 356:1317–1322

    Article  Google Scholar 

  • Wicken JS (1985) Thermodynamics and the conceptual structure of evolutionary theory. J Theor Biol 117:163–383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. J. M. Jagers op Akkerhuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jagers op Akkerhuis, G.A.J.M. (2016). A Thermodynamic Account of the Emergence of Organised Matter. In: Jagers op Akkerhuis, G. (eds) Evolution and Transitions in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-43802-3_14

Download citation

Publish with us

Policies and ethics