Skip to main content

General Introduction

  • Chapter
  • First Online:
Evolution and Transitions in Complexity

Abstract

This book focuses on fundamental concepts in the life sciences, and how these can be defined. The reason of writing a book with this focus is that terms such as particle, organism, hierarchy, life and evolution form the basis of scientific communication, but frequently lack a consensus definition. For example the concept of 'life' currently has 123 different scientific definitions. The existence of different definitions is a source of confusion and frustrates smooth communication and the generalisation of theory. This is the reason why this book takes up the challenge of contributing to conceptual clarity. In relation to this goal, this introductory chapter discusses some subjects that are of general relevance. To begin with room is made for reservations people may have about attempts aiming at the creation of stringent definitions. Thereafter, it is discussed why the way mathematicians define their concepts can be used as an example of how definitions questions can be resolved in other branches of science. Additionally, a list of criteria is introduced that assist in deciding why of any pair of competing definitions one would prefer one definition over the other. Finally, short summaries are offered of why this book takes a special interst in the following topics: a modern ladder of complexity, Darwinian evolution, major evolutionary transitions, life and thermodynamics.

“… we argue that impactful data-free papers provide coherent syntheses and reviews of current knowledge, integrate different fields of thought in novel ways, or identify important future directions within a framework beyond the scope typical of empirical studies”(Davis et al. 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Archer M, Bhaskar R, Collie A, Lawson T, Norrie A (1998) Critical realism. Essential readings. Routledge, London

    Google Scholar 

  • Bedau MA, Cleland CE (2010) The nature of life: classical and contemporary perspectives from philosophy and science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar R (1998) Critical realism. Essential readings. Routledge, London

    Google Scholar 

  • Chambers R (2002) The evolution of Darwin’s theory into an axiomatic system. http://www.math.ups.edu/~bryans/Current/Journal_Spring_2002/213_RChambers_2002.pdf

  • Cleland C (2012) Life without definitions. Synthese 185(1):125–144. doi:10.1007/s11229-011-9879-7

    Article  Google Scholar 

  • Darwin C (1876) On the origin of species by means of natural selection, or he preservation of favoured races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Davis GH, Payne E, Sih A (2015) Commentary: four ways in which data-free papers on animal personality fail to be impactful. Front Ecol Evol 3:23. doi:10.3389/fevo.2015.00102

    Google Scholar 

  • Deamer DW, Fleischaker GR (eds) (1994) Origins of life: the central concepts. Jones & Bartlett, Boston

    Google Scholar 

  • Einstein A (1934) On the method of theoretical physics. Philos Sci 1:163–169.

    Google Scholar 

  • Ellis RJ (2010) How science works: Evolution - a student primer. Springer.

    Google Scholar 

  • Emmeche C, Køppe S, Stjernfelt F (1997) Explaining emergence: towards an ontology of levels. J Gen Philos Sci 28(1):83–117. doi:10.1023/A:1008216127933

    Article  Google Scholar 

  • Gánti T (1971) The principle of life (in Hungarian). Gondolat, Budapest.

    Google Scholar 

  • Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, Oxford.

    Google Scholar 

  • Perspect Biol Med 18(2):179–184. doi:10.1353/pbm.1975.0005

    Google Scholar 

  • Hengeveld R (2010) Definitions of life are not only unnecessary, but they can do harm to understanding. Found Sci 16:323–325

    Article  Google Scholar 

  • Hull D (1969) What philosophy of biology is not. Synthese 20(2):157–184. doi:10.1007/BF00413784.

    Google Scholar 

  • Hull CL, Hovland CL, Ross RT, Hall M, Perkings DT, Fitch FB (1940) Mathematico-deductive theory of rote learning. A study in scientific methodology. New Haven, CT: Yale University Press.

    Google Scholar 

  • Hume D (1738–1740) Treatise on human nature. London.

    Google Scholar 

  • Huxley JS (1942) Evolution: the modern synthesis. Harper, New York

    Google Scholar 

  • Jagers op Akkerhuis GAJM (2001) Extrapolating a hierarchy of building block systems towards future neural network organisms. Acta Biotheor 49:171–189

    Article  CAS  PubMed  Google Scholar 

  • Jagers op Akkerhuis GAJM (2008) Analysing hierarchy in the organization of biological and physical systems. Biol Rev 83:1–12

    Article  PubMed  Google Scholar 

  • Jagers op Akkerhuis GAJM (2010) Towards a hierarchical definition of life, the organism, and death. Found Sci 15:245–262

    Article  Google Scholar 

  • Jagers op Akkerhuis GAJM (2010a) The operator hierarchy, a chain of closures linking matter life and artificial intelligence. Ph.D. Thesis, Radboud University, Nijmegen

    Google Scholar 

  • Jagers op Akkerhuis GAJM (2012) The role of logic and insight in the search for a definition of life. J Biomol Struct Dyn 29:619–620

    Article  PubMed  Google Scholar 

  • Jagers op Akkerhuis GAJM, van Straalen NM (1999) Operators, the Lego-bricks of nature: evolutionary transitions from fermions to neural networks. World Futures J Gen Evol 53:329–345

    Article  Google Scholar 

  • Jones R (2009) Categories, borders and boundaries. Prog Hum Geogr 33(2):174–189. doi: 10.1177/0309132508089828

    Article  Google Scholar 

  • Kant (1786) Metaphysical foundations of natural science. Riga, J.F Hartknoch.

    Google Scholar 

  • Koshland DE Jr (2002) The seven pillars of life. Science 295(5563):2215–2216. doi:10.1126/science.1068489

    Article  CAS  PubMed  Google Scholar 

  • Kragh H (1999) Videnskab og virkelighed. Aktuel Naturvidenskab Århus 1:36–38

    Google Scholar 

  • Kühn TS (1962). The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Laland KN (2015) On evolutionary causes and evolutionary processes. Behav Process 117:97–104. doi:10.1016/j.beproc.2014.05.008

    Article  Google Scholar 

  • Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc Biol Sci 282(1813):20151019

    Article  PubMed  PubMed Central  Google Scholar 

  • Machery E (2012) Why I stopped worrying about the definition of life… why you should as well. Synthese 185:145–164

    Article  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Freeman, Oxford

    Google Scholar 

  • Metz JAJ (2013) On the concept of individual in ecology and evolution. J Math Biol 66:635–647. doi:10.1007/s00285-012-0610-1

    Article  CAS  PubMed  Google Scholar 

  • Morales J (1998) The definition of life. Psychozoan 1(a strictly electronic journal):1–39.

    Google Scholar 

  • Moreno A, Mossio M (2015) Biological autonomy: a philosophical and theoretical enquiry. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Newton I (1687) Philosophiae Naturalis Principia Mathematica. Jussu Societatis Regiæ, London

    Book  Google Scholar 

  • Newton I (1726) Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), 3rd edn. William & John Innys, London

    Google Scholar 

  • Pepper JW, Herron MD (2008) Does biology need an organism concept? Biol Rev 83(4):621–627. doi:10.1111/j.1469-185X.2008.00057.x

    Article  PubMed  Google Scholar 

  • Pigliucci M, Müller GB (2010) Evolution—the extended synthesis. The MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Pigliucci M, Rausher M (2007) Do we need an extended evolutionary synthesis? Evolution 61(12):2743–2749. doi:10.1111/j.1558-5646.2007.00246.x

    Article  PubMed  Google Scholar 

  • Popa R (2004) Between necessity and probability: searching for the definition and the origin of life. In: Advances in astrobiology and biogeophysics. Springer-Verlag Berlin, Heidelberg

    Google Scholar 

  • Queller DC (1997) Cooperators since life began. Q Rev Biol 72(2):184. doi:10.1086/419766

    Article  Google Scholar 

  • Queller DC (2000) Relatedness and the fraternal major transitions. Philos Trans R Soc Lond B Biol Sci 355(1403):1647–1655. doi:10.1098/rstb.2000.0727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queller DC, Strassmann JE (2009) Beyond society: the evolution of organismality. Philos Trans R Soc Lond B Biol Sci 364:3143–3155

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice SH (2008) A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution. BMC Evol Biol 8:262.

    Google Scholar 

  • Swenson R (1988) Emergence and the principle of maximum entropy production: Multi-level system Meetings of the International Society for General Systems Research, 32: Theory, evolution, and non-equilirium thermodynamics. Proceedings of the 32nd Annual Meeting of the Internationa Society for General Systems Research

    Google Scholar 

  • Szathmáry E (2015) Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci, USATrifonov EN (2011) Vocabulary of definitions of life suggests a definition. J Biomol Struct Dyn 29:259–266

    Google Scholar 

  • van der Steen WJ (1997) Limitations of general concepts: a comment on Emmeche’s definition of “life”. Ultimate Reality Meaning 20:317–320

    Google Scholar 

  • Whitehead AN, Russell B (1910) Principia mathematica 1, 1st edn. Cambridge University Press, Cambridge, JFM 41.0083.02

    Google Scholar 

  • Whitehead AN, Russell B (1912) Principia mathematica 2, 1st edn. Cambridge University Press, Cambridge, JFM 43.0093.03

    Google Scholar 

  • Whitehead AN, Russell B (1913) Principia mathematica 3, 1st edn. Cambridge University Press, Cambridge, JFM 44.0068.01

    Google Scholar 

  • Williams MB (1970) Deducing the consequences of evolution: a mathematical model. J Theor Biol 29(3):343–385. doi:10.1016/0022-5193(70)90103-7

    Article  CAS  PubMed  Google Scholar 

  • Williams MB (1973) Falsifiable predictions of evolutionary theory. Philos Sci 40(4):518. doi:10.1086/288562

    Article  Google Scholar 

  • Woodger JH (1937) The axiomatic method in biology. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. J. M. Jagers op Akkerhuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jagers op Akkerhuis, G.A.J.M. (2016). General Introduction. In: Jagers op Akkerhuis, G. (eds) Evolution and Transitions in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-43802-3_1

Download citation

Publish with us

Policies and ethics