Skip to main content

Self-assembled Nanocomposite Oxide Films

  • Chapter
  • First Online:
Correlated Functional Oxides
  • 689 Accesses

Abstract

Three-dimensional (3D) periodic nanopillar/nanodot structures embedded in a matrix of another material have considerable potential in devices exploiting spin/electronic couplings generated at new constituted lateral interfaces between two different phases. To fabricate periodic nanocomposite oxide films, a self-assembling growth technique from a composition-adjusted single target using pulsed laser deposition is promising. This chapter describes the fundamental growth mechanism of self-assembly synthesis and demonstrates the fabrication technique in preparing nanocomposite thin films composed of a spinel-type magnetic semiconductor (Fe,Zn)3O4 and a perovskite-type ferroelectric BiFeO3. As an advanced fabrication technique to obtain precise periodic nanocomposite structures, we furthermore introduce a 3D nano-seeding assembly technique. This technique resolves longstanding issues of precise positioning, size alignment, and configuration inversion of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Bednorz, K.A. Müller, Possible High TC Superconductivity in the Ba–La–Cu–O System. Condens. Matter. 64, 189–193 (1986)

    Article  Google Scholar 

  2. Y. Tokura, A. Urushibara, Y. Moritomo et al., Giant magnetotoransport phenomena in filling-controlled Kondo lattice system: La1-x Sr x MnO3. J. Phys. Soc. Jpn. 63, 3931–3935 (1994)

    Article  Google Scholar 

  3. E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939)

    Article  Google Scholar 

  4. J. Wang, J.B. Neaton, H. Zheng et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott et al., Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  Google Scholar 

  6. H. Tabata, H. Tanaka, T. Kawai, Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl. Phys. Lett. 65, 1970–1972 (1994)

    Article  Google Scholar 

  7. K. Ueda, H. Tabata, T. Kawai, Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280, 1064–1066 (1998)

    Article  Google Scholar 

  8. H. Tanaka, T. Kawai, Enhancement of magnetoresistance in spin frustrated (La, Sr)MnO3/LaFeO3 artificial lattices. Solid State Commun. 112, 201–205 (1999)

    Article  Google Scholar 

  9. P.A. Salvador, A.-M. Haghiri-Gosnet, B. Mercey et al., Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n superlattices. Appl. Phys. Lett. 75, 2638–2640 (1999)

    Article  Google Scholar 

  10. T. Kanki, H. Tanaka, T. Kawai, Magnetotransport properties of ferromagnetic La0.8Ba0.2MnO3/ antiferromagnetic LaMO3 (M = Cr, Fe) perovskite trilayer films. J. Appl. Phys. 93, 4718–4721 (2003)

    Article  Google Scholar 

  11. E. Bousquet, M. Dawber, N. Stucki et al., Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–737 (2008)

    Article  Google Scholar 

  12. J. Zhang, H. Tanaka, T. Kanki, Strain effect and the phase diagram of La1-x Ba x MnO3 thin films. Phys. Rev. B. 64, 184404-(1–7) (2001)

    Google Scholar 

  13. T. Kanki, H. Tanaka, T. Kawai, Anomalous strain effect in La0.8Ba0.2MnO3 epitaxial thin film: role of the orbital degree of freedom in stabilizing ferromagnetism. Phys. Rev. B. 64, 224418-(1–5) (2001)

    Google Scholar 

  14. L. Kim, D. Jung, J. Kim et al., Strain manipulation in BaTiO3/ SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl. Phys. Lett. 82, 2118–2120 (2003)

    Article  Google Scholar 

  15. D.G. Scholm, L.-Q. Chen, C.-B. Eom et al., Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007)

    Article  Google Scholar 

  16. A. Ohtomo, D.A. Muller, J.L. Grazul et al., Artificial charge-modulation atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002)

    Article  Google Scholar 

  17. A. Tsukazaki, A. Ohtomo, T. Kita et al., Quantum hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007)

    Article  Google Scholar 

  18. S. Mathews, R. Ramesh, T. Venkatesan et al., Ferroelectric field effect transistor based epitaxial perovskite heterostructures. Science 276, 238–240 (1997)

    Article  Google Scholar 

  19. H. Tanaka, J. Zhang, T. Kawai, Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate p-n junction. Phys. Rev. Lett. 88, 027204-(1–4) (2002)

    Google Scholar 

  20. T. Kanki, Y.-G. Park, H. Tanaka et al., Electrical-field control of metal-insulator transition at room temperature in Pb(Zr0.2Ti0.8)O3/ La1-x Ba x MnO3 field-effect transistor. Appl. Phys. Lett. 83, 4860–4862 (2003)

    Article  Google Scholar 

  21. K. Ueno, H. Inoue, H. Akoh et al., Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator. Appl. Phys. Lett. 83, 1755–1757 (2003)

    Article  Google Scholar 

  22. T. Yajima, Y. Hikita, H.Y. Hwang, A heteroepitaxial perovskite metal-base transistor. Nature Mater. 10, 198–201 (2011)

    Article  Google Scholar 

  23. T. Kanki, H. Tanaka, T. Kawai, Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor. Appl. Phys. Lett. 89, 242506-(1–3) (2006)

    Google Scholar 

  24. W. Eerenstein, M. Wiora, J.L. Prieto et al., Magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6, 348–351 (2007)

    Article  Google Scholar 

  25. H. Zheng, J. Wang, S.E. Lofland et al., Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science 303, 661–663 (2004)

    Article  Google Scholar 

  26. H. Zheng, Q. Zhan, F. Zavaliche et al., Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6, 1401–1407 (2006)

    Article  Google Scholar 

  27. I. Levin, J. Li, J. Slutsler et al., Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18, 2044–2047 (2006)

    Article  Google Scholar 

  28. S.-C. Liao, P.-Y. Tsai, C.-W. Liang et al., Functionality design of nanopillars in self-assembled perovskite—spinel heteroepitaxial nanostructures. ACS Nano 5, 4118–4122 (2011)

    Article  Google Scholar 

  29. F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili et al., Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005)

    Article  Google Scholar 

  30. H. Zheng, J. Wang, L. Mohaddes-Ardabili et al., Three-dimensional heteroepitaxy in self-assembled BaTiO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 85, 2035–2037 (2004)

    Article  Google Scholar 

  31. Q. Zhan, R. Yu, S.P. Crane et al., Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902-(1–3) (2006)

    Google Scholar 

  32. L. Mohaddes-Ardanili, H. Zheng, S.B. Ogale et al., Self- assembled single-crystal ferromagnetic iron nanowires formed by decomposition. Nature Mater. 3, 533–538 (2004)

    Article  Google Scholar 

  33. K. Okada, T. Sakamoto, K. Fujiwara et al., Three-dimensional nano-seeding assembly of ferromagnetic Fe/LaSrFeO4 nano-hetero dot array. J. Appl. Phys. 112, 024320-(1–7) (2012)

    Google Scholar 

  34. J. Macmanus-Driscoll, P. Zerrer, H. Wang et al., Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nature Mater. 7, 314–320 (2008)

    Article  Google Scholar 

  35. T. Zhao, S.R. Shinde, S.B. Ogale et al., Electric field effect in diluted magnetic insulator anatase Co: TiO2. Phys. Rev. Lett. 94, 126601-(1–4) (2005)

    Google Scholar 

  36. S.M. Wu, S.A. Cybart, P. Yu et al., Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010)

    Article  Google Scholar 

  37. J. Takaobushi, T. Kanki, T. Kawai et al., Preparation of ferroelectric field effect transistor based on sustainable strongly correlated (Fe,Zn)3O4 oxide semiconductor and their electric transport properties. Appl. Phys. Lett. 98, 102506-(1–3) (2011)

    Google Scholar 

  38. C.H. Ahn, J.-M. Triscon, J. Mannhart, Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003)

    Article  Google Scholar 

  39. I. Pallecchi, L. Pellegrino, E. Bellingeri et al., Field effect in manganite ultrathin films: magneto transport and localization mechanisms. Phys. Rev. B. 78, 024411-(1–12) (2008)

    Google Scholar 

  40. J.L. Mac Manus-Driscoll, Thin film structures: designing interface-induced functionality in electronic materials. Adv. Func. Mater. 20, 2035–2045 (2010)

    Article  Google Scholar 

  41. T.F. Kuech, Handbook of Crystal Growth Thin Films and Epitaxy: Basic Techniques, vol. III (Elsevier, UK, 2015), pp. 555–604

    Google Scholar 

  42. Z. Zhang, S. Satpathy, Electron states, magnetism, and Verwey transition in magnetite. Phys. Rev. B. 44, 13319–13331 (1991)

    Article  Google Scholar 

  43. J. Takaobushi, H. Tanaka, T. Kawai et al., Fe3-x Zn x O4 thin film as tunable high Curie temperature ferromagnetic semiconductor. Appl. Phys. Lett. 89, 242507-(1–3) (2006)

    Google Scholar 

  44. D. Venkateshvaran, M. Althammer, A. Nielsen et al., Epitaxial Zn x Fe3-x O4 thin films; a spintronic material with tunable electrical and magnetic properties. Phys. Rev. B. 79, 134405-(1–12) (2009)

    Google Scholar 

  45. T. Sato, T. Iijima, M. Seki et al., Magnetic properties of ultrafine ferrite particles. J. Magn. Magn. Mater. 65, 252–256 (1987)

    Article  Google Scholar 

  46. T. Sakamoto, A.N. Hattori, T. Kanki et al., Self-assembled growth of spinel (Fe,Zn)3O4—perovskite BiFeO3 nanocomposite structures using pulsed laser deposition. Jpn. J. Appl. Phys. 51, 035504-(1–4) (2012)

    Google Scholar 

  47. A.S. Borowiak, K. Okada, T. Kanki et al., Nanosclae study of perovskite BiFeO3/spinel (Fe,Zn)3O4 co-deposited thin film by electrical scanning probe methods. Appl. Surf. Sci. accepted. (2015)

    Google Scholar 

  48. K. Prashant, K. Sangeeth, Chromium nanowires grown inside lithographically fabricated u-trench templates. Nanosci. Nanotechnol. Lett. 3, 643–647 (2011)

    Article  Google Scholar 

  49. P. Kumar, K.S. Subrahmanyam, C.N.R. Rao, Graphene pattering and lithography employing laser/electron-beam reduced graphene oxide and hydrogenated graphene. Mater. Exp. 1, 252–256 (2011)

    Article  Google Scholar 

  50. Z. Pan, K. Suresh, D. Nianqiang et al., Directed fabrication of radially stacked multifunctional oxide heterostructures using soft electron-beam lithography. Small 2, 274–280 (2006)

    Article  Google Scholar 

  51. W. Lee, H. Han, A. Lotnyk et al., Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. Nature Nanotechnol. 3, 402–407 (2008)

    Article  Google Scholar 

  52. N. Suzuki, H. Tanaka, S. Yamanaka et al., Epitaxial nanodot arrays of transition-metal oxides fabricated by dry deposition combined with a nanoimprint-lithography-based molybdenum lift-off technique. Small 4, 1661–1665 (2008)

    Article  Google Scholar 

  53. K. Goto, H. Tanaka, T. Kawai, Controlled fabrication of epitaxial (Fe, Mn)3O4 artificial nanowire structures and their electric and magnetic properties. Nano Lett. 9, 1962–1966 (2009)

    Article  Google Scholar 

  54. T. Sakamoto, K. Okada, A.N. Hattori et al., Position-controlled functional oxide lateral heterostructures consisting of artificially aligned (Fe,Zn)3O4 nanodots and BiFeO3 matrix. Nanotechnology 23, 335302-(1–6) (2012)

    Google Scholar 

  55. T. Sakamoto, K. Okada, A.N. Hattori et al., Epitaxial inversion on ferromagnetic (Fe,Zn)3O4/ ferroelectric BiFeO3 core-shell nanodot arrays using three dimensional nano-seeding assembly. J. Appl. Phys. 113, 1024302-(1–5) (2013)

    Google Scholar 

  56. N-G. Cha, B-K. Lee, T. Kanki et al., Direct fabrication of integrated 3D Au nanobox arrays by sidewall deposition with controllable heights and thickness. Nanotechnology 20, 395301-(1–6) (2009)

    Google Scholar 

  57. N-G. Cha, T. Kanki, H. Tanaka, Direct fabrication of integrated 3D epitaxial functional transition metal oxide nanostructures using extremely small hollow nanopillar nano-imprint metal masks. Nanotechnology 22, 185306-(1–6) (2011)

    Google Scholar 

  58. S. Yamanaka, T. Kanki, T. Kawai et al., Enhancement of spin polarization in a transition metal oxide ferromagnetic nanodot diode. Nano Lett. 11, 343–347 (2011)

    Article  Google Scholar 

  59. J. Takaobushi, M. Ishikawa, S. Ueda et al., Electronic structures of Fe3-x M x O4 (M = Mn, Zn) spinel oxide thin films investigated by x-ray photoemission spectroscopy and x-ray magnetic circular dichroism. Phys. Rev. B. 76, 205108-(1–6) (2007)

    Google Scholar 

  60. M. Copel, M.C. Reuter, E. Kaxiras et al., Surfactants in epitaxial growth. Phys. Rev. Lett. 63, 632–635 (1989)

    Article  Google Scholar 

  61. W. Zhang, J.R. Smith, Nonstoichiometric interfaces and Al2O3 adhesion with Al and Ag. Phys. Rev. Lett. 85, 3225–3228 (2000)

    Article  Google Scholar 

  62. S. Ogawa, S. Ino, T. Kato et al., Epitaxial growth of free-centerd cubic metals on alkalihalide crystals cleaved in ultrahigh vacuum. J. Phys. Soc. Jpn. 21, 1963–1972 (1966)

    Article  Google Scholar 

  63. T. Shitara, T. Nishinaga, Surface diffusion length of gallium during MBE growth on the various misoriented GaAs(001) substrates. Jpn. J. Appl. Phys. 28, 1212–1216 (1989)

    Article  Google Scholar 

  64. J.D. Ferguson, G. Arikan, D.S. Dale et al., Measurements of surface diffusivity and coarsening during pulsed laser deposition. Phys. Rev. Lett. 103, 256103-(1–4) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Kanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kanki, T., Tanaka, H. (2017). Self-assembled Nanocomposite Oxide Films. In: Nishikawa, H., Iwata, N., Endo, T., Takamura, Y., Lee, GH., Mele, P. (eds) Correlated Functional Oxides. Springer, Cham. https://doi.org/10.1007/978-3-319-43779-8_6

Download citation

Publish with us

Policies and ethics