Skip to main content

Measurement of the Cross Section of Four-Jet Events

  • Chapter
  • First Online:
High Jet Multiplicity Physics at the LHC

Part of the book series: Springer Theses ((Springer Theses))

  • 345 Accesses

Abstract

This chapter presents a measurement of the cross section of four-jet events produced in 8 TeV collisions. The opening sections contain all the studies performed to define the analysis strategy, including the trigger criteria, kinematic selection, and the variables used to study the cross section differentially across multiple regions of phase space. The following sections focus on some of the most important steps of the analysis procedure, namely the determination of the bin widths for each variable, the unfolding process, and the calculation of the uncertainties. Finally, the results are discussed and compared to a variety of theoretical predictions.

‘How can I have done that?’ she thought.

‘I must be growing small again.’ She got up and went to the table to measure herself by it.

Lewis Carroll, Alice’s Adventures in Wonderland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 2.5.4 for a more detailed summary of how jets are reconstructed and calibrated in ATLAS.

  2. 2.

    A high number of iterations was chosen to maximise the shape accuracy in the unfolding. Since this unfolded spectrum is only used as a reference to derive the reweighting function, it is seen to provide good agreement at reconstructed level, and does not get propagated through the test in any way, the number of iterations does not need to be optimised.

  3. 3.

    A kernel regression estimates the continuous distribution of a variable from a set of data points. The value of the distribution at each point is obtained from the weighted contributions of the data points; in this study, the weighting function—or kernel function—is a Gaussian.

  4. 4.

    Except for when the Jet Energy Resolution is evaluated. This is explained in the following subsection.

  5. 5.

    Effectively this means that 100 replicas of the upward- and downward-fluctuated spectra are independently unfolded.

  6. 6.

    \(\sigma \) was defined in the context of the shape uncertainty, in Sect. 4.6.3.

References

  1. Berger, C. F., Bern, Z., et al. (2008). Automated implementation of on-shell methods forone-loop amplitudes. Physical Review D, 78(3), 036003.

    Article  ADS  Google Scholar 

  2. Sherpa 2. https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.beta.html.

  3. ATLAS Collaboration. (2011). Measurement of multi-jet cross sections in proton-protoncollisions at a 7 TeV center-of-mass energy. European Physical Journal, C71, 1763. doi:10.1140/epjc/s10052-011-1763-6. arXiv:1107.2092.

  4. CMS Collaboration. (2015). Distributions of topological observables in inclusive threeandfour-jet events in pp collisions at \(\sqrt{s}=7\,TeV\). arXiv:1502.04785.

  5. Acosta, D., et al. (2005). Comparison of three-jet events in pp-bar collisions at \(\sqrt{s}=1.8\) TeV to predictions from a next-to-leading order QCD calculation. Physical Review, D71, 032002.

    ADS  Google Scholar 

  6. Abe, F., et al. (1993). Study of four-jet events and evidence for double parton interactionsin p anti-p collisions at \(\sqrt{s}1.8\) TeV. Physical Review D, 47, 4857.

    Article  ADS  Google Scholar 

  7. D0 Collaboration. (2003). Multiple jet production at low transverse energies in pp collisions at \(\sqrt{s}=1.8\) TeV. Physical Review D, 67, 052001. arXiv:hep-ex/0207046.

  8. D0 Collaboration. (2001). Ratios of multijet cross sections in \(p\bar{p}\) collisions at \(\sqrt{s}= 1.8\) TeV. Physical Review Letters, 86, 1955–1960. doi:10.1103/PhysRevLett.86.1955. arXiv:hep-ex/0009012.

    Google Scholar 

  9. Andersen, J. R., & Smillie, J. M. (2010). High energy description of processeswith multiple hard jets. Nuclear Physics B-Proceedings Supplements, 205, 205–210.

    Article  ADS  Google Scholar 

  10. Cacciari, M., Salam, G. P., & Soyez, G. (2008). The Anti-k(t) jet clusteringalgorithm. JHEP, 0804, 063. doi:10.1088/1126-6708/2008/04/063. arXiv:0802.1189.

    Article  ADS  Google Scholar 

  11. Batista, S., Begel, M., et al. (2014). Global Sequential Calibration with the ATLAS Detectorin Proton-Proton Collisions at \(\sqrt{s}= 8\) TeV with ATLAS 2012 data. Technical report. ATL-COM-PHYS-2014-753. Geneva: CERN.

    Google Scholar 

  12. ATLAS Good Run Lists for Analyses. https://twiki.cern.ch/twiki/bin/view/AtlasProtected/GoodRunListsForAnalysis.

  13. D’Agostini, G. (1995). A multidimensional unfolding method based on Bayes’ theorem. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment, 362(2), 487–498.

    Article  ADS  Google Scholar 

  14. D’Agostini, G. (2010). Improved iterative Bayesian unfolding. arXiv:1010.0632.

  15. Adye, T. (2011). Unfolding algorithms and tests using RooUnfold. arXiv:1105.1160.

  16. ATLAS Collaboration. (2012). Measurement of inclusive jet and dijet production in ppcollisions at \(\sqrt{s}=7\) TeV using the ATLAS detector. Physical Review D, 86(1), 014022.

    Google Scholar 

  17. Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annalsof Statistics, 7, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  18. Jogesh Babu, G., Pathak, P. K., & Rao, C. R. (1999). Second order correctness of the Poissonbootstrap. Annals of Statistics, 27(5), 1666–1683.

    Article  MathSciNet  MATH  Google Scholar 

  19. Bootstrap Generator. https://svnweb.cern.ch/trac/atlasphys/browser/Physics/StandardModel/Common/BootstrapGenerator.

  20. ATLAS Collaboration, (2013). Improved luminosity determination in pp collisions at \(\sqrt{s}= 7\) TeV using the ATLAS detector at the LHC. European Physical Journal, C73, 2518. doi:10.1140/epjc/s10052-013-2518-3. arXiv:1302.4393.

  21. Sjostrand, T., Mrenna, S., & Skands, P. Z. (2008). A brief introductionto PYTHIA 8.1. Computer Physics Communications, 178, 852–867. doi:10.1016/j.cpc.2008.01.036. arXiv:0710.3820.

    Article  ADS  MATH  Google Scholar 

  22. Bahr, M., et al. (2008). Herwig++ physics and manual. European Physical Journal, C58, 639–707. doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883.

    Article  ADS  Google Scholar 

  23. Katzy, J. M. (2013). QCD Monte-Carlo model tunes for the LHC. Progress in Particle and Nuclear Physics, 73, 141–187.

    Article  ADS  Google Scholar 

  24. ATLAS Collaboration. (2012). Summary of ATLAS Pythia 8 tunes. ATL-PHYS-PUB-2012-003. Geneva.

    Google Scholar 

  25. Gieseke, S., Rohr, C., & Siodmok, A. (2012). Colour reconnections inHerwig++. European Physical Journal, C72, 2225. doi:10.1140/epjc/s10052-012-2225-5. arXiv:1206.0041.

    Article  ADS  Google Scholar 

  26. Lai, H.-L., Guzzi, M., et al. (2010). New parton distributions for collider physics. Physical Review, D82, 074024. doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241.

    ADS  Google Scholar 

  27. Pumplin, J., et al. (2002). New generation of parton distributions with uncertaintiesfrom global QCD analysis. JHEP, 07, 012. doi:10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195.

    Article  ADS  Google Scholar 

  28. Alwall, J., et al. (2011). MadGraph 5: going beyond. JHEP, 06, 128. doi:10.1007/JHEP06(2011)128. arXiv:1106.0522.

    Article  ADS  MATH  Google Scholar 

  29. ATLAS Collaboration. (2011). ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11. ATLPHYS-PUB-2011-009.

    Google Scholar 

  30. Höche, S., Krauss, F., et al. (2006). Matching parton showers and matrix elements. arXiv:hep-ph/0602031.

  31. Gleisberg, T., et al. (2009). Event generation with SHERPA 1.1. JHEP, 02, 007. doi:10.1088/1126-6708/2009/02/007. arXiv:0811.4622.

    Article  ADS  Google Scholar 

  32. Bern, Z., Diana, G., et al. (2012). Four-jet production at the large hadron collider atnext-to-leading order in QCD. Physical Review Letters, 109(4), 042001.

    Article  ADS  Google Scholar 

  33. Krauss, F., Kuhn, R., & Soff, G. (2002). AMEGIC++ 1.0, a matrix elementgenerator in C++. Journal of High Energy Physics, 2002(02), 044.

    Article  ADS  Google Scholar 

  34. Gleisberg, T., & Krauss, F. (2008). Automating dipole subtraction for QCD NLO calculations. The European Physical Journal, C53(3), 501–523.

    Article  ADS  Google Scholar 

  35. Beauchemin, H., Bona, M., et al. (2013). A measurement of the W production cross sectionand the ratio of W to Z production cross section in association with jets with theATLAS detector. Technical report. ATL-COM-PHYS-2013-590. Geneva: CERN.

    Google Scholar 

  36. Andersen, J. R., & Smillie, J. M. (2010). Constructing all-order corrections tomulti-jet rates. Journal of High Energy Physics, 2010(1), 1–35.

    Article  Google Scholar 

  37. Andersen, J. R., & Smillie, J. M. (2010). Factorization of the t-channel pole inquark-gluon scattering. Physical Review D, 81(11), 114021.

    Article  ADS  Google Scholar 

  38. Simon Badger. Private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Crispín Ortuzar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortuzar, M.C. (2016). Measurement of the Cross Section of Four-Jet Events. In: High Jet Multiplicity Physics at the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-43461-2_4

Download citation

Publish with us

Policies and ethics