Skip to main content

Cancer, Ageing and Immunosenescence

  • Chapter
  • First Online:
The Ageing Immune System and Health

Abstract

Worldwide the percentage of individuals older than 60 years is growing due to the increase in longevity. Age is an important risk factor for cancer and subjects aged over 60 also have a higher risk of comorbidities. Approximately 50 % of neoplasms occur in patients older than 70 years and these patients often have a range of therapies ranging from surgery, adjuvant or neoadjuvant therapy, or even palliative chemotherapy. While the OPAS (Pan American Health Organization) considers elderly subjects to be those aged over 60 years and for the WHO (World Health Organization) it is subjects over 65 years, a major concern for poor prognosis is with cancer patients over 70–75 years. These patients have a lower functional reserve, a higher risk of toxicity after chemotherapy, and an increased risk of infection and renal complications that lead to a poor quality of life. Several biomarkers (immunological and physiological) have been evaluated in cancer aiming to improve diagnostics, to predict whether a patient could have any benefit from a specific treatment, and to perform patient follow-up. Cancer is a complex disease and in this chapter we will discuss the distribution of cancer cases in older adults, the most important types of cancer in this population, treatment and outcomes, and possible immunosenescence characteristics related to cancer in the aged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OPAS:

Pan American Health Organization

WHO:

World Health Organization

US:

United States of America

UK:

United Kingdom

ECOG:

Eastern Cooperative Oncology Group

CGA:

Comprehensive Geriatric Assessment

CRASH:

Chemotherapy Risk Assessment Scale

References

  1. http://wonder.cdc.gov/CancerMort-v2005.html. Accessed 2 Sept 2010.

  2. Ibrahim AS, Khaled HM, Mikhail NNH, Baraka H, Kamel H. Cancer incidence in Egypt; results of the national population-bases cancer registry program. J Cancer Epidemiol. 2014. doi:10.1155/2014/437971.

    PubMed  PubMed Central  Google Scholar 

  3. Mistry M, Parkin DM, Ahmad AS, Sasieni P. Cancer incidence in the United Kingdom: projections to the year 2030. Br J Cancer. 2011;105:1795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ministry of Health, Labour and Welfare: Patient Survey. Available from http://www.mhlw.go.jp/toukei/list/10-20.html. Accessed 10 Jul. 2015

  5. GLOBOCAN 2012 Estimated Cancer Incidence. Mortality, and Prevalence Worldwide in 2012, Available from http://globocan.iarc.fr

  6. http://seercancergov. Accessed on 2014.

    Google Scholar 

  7. Lichtman SM. Geriatric Oncology and Clinical Trials. ASCO Educational eBook; 2015 May 29-June2; Chicago-Illinois. American Society of Clinical Oncology, Alexandria VA.

    Google Scholar 

  8. Talarico L, Chen G, Pazdur R. Enrollment of elderly patients in clinical trials for cancer drug registration: a 7-year experience by the US Food and Drug Administration. J Clin Oncol. 2004;22:4626–31.

    Article  PubMed  Google Scholar 

  9. Wildiers H, Mauer M, Pallis A, Hurria A, Mohile SG, Luciani A, et al. Endpoints and trial design in geriatric oncology research: a joint European organisation for research and treatment of cancer-Alliance for Clinical Trials in Oncology International Society of Geriatric Oncology position article. J Clin Oncol. 2013;31:3711–8.

    Article  PubMed  Google Scholar 

  10. Hurria A, Togawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29:3457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lichtman SM. Call for changes in clinical trial reporting of older patients with cancer. J Clin Oncol. 2012;30:893–4.

    Article  PubMed  Google Scholar 

  12. Cheung WY, Neville BA, Cameron DB, Cook EF, Earle C. Comparisons of patient and physician expectations for cancer survivorship care. J Clin Oncol. 2009;27:2489–95.

    Article  PubMed  Google Scholar 

  13. Earle CC. Cancer survivorship research and guidelines: may be the cart should be beside the horse. J Clin Oncol. 2007;25:3800–1.

    Article  PubMed  Google Scholar 

  14. De Santis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–71.

    Article  Google Scholar 

  15. Extermann M, Hurria A. Comprehensive geriatric assessment for older patients with cancer. J Clin Oncol. 2007;25(14):1824–31.

    Article  PubMed  Google Scholar 

  16. Rodin MB, Mohile SG. A practical approach to geriatric assessment in oncology. J Clin Oncol. 2007;25(14):1936–44.

    Article  PubMed  Google Scholar 

  17. Pondal M, Delser TJ. Normative data and determinants for the timed “up and go” test in a population-based sample of elderly individuals without gait disturbances. J Geriatr Phys Ther. 2008;31(2):57–63.

    Article  PubMed  Google Scholar 

  18. Extermann M, Boler I, Reich RR, Lyman GH, Brown RH, DeFelice J, et al. Predicting the risk of chemotherapy toxicity in older patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer. 2012;118(13):3377–86.

    Article  PubMed  Google Scholar 

  19. National Comprehensive Cancer Network. NCCN—Guidelines Index. Older adult oncology. 2015, Oncology. Available from http:www.nccn.org. Accessed on 21 Dec 2015.

    Google Scholar 

  20. Pasetto LM, Monfardini S. The role of capecitabine in the treatment of colorectal cancer in the elderly. Anticancer Res. 2006;26:2381–6.

    CAS  PubMed  Google Scholar 

  21. Eichhorst BF, Busch R, Stilgenbauer S. First-Line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood. 2009;114:3382–91.

    Article  CAS  PubMed  Google Scholar 

  22. Biganzoli L, Licitra S, Moretti E, Pestrin M, Zafarana E, Di Leo A. Taxanes in the elderly: can we gain as much and be less toxic? Crit Rev Oncol Hematol. 2009;70:262–71.

    Article  PubMed  Google Scholar 

  23. Pal SK, Hurria A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J Clin Oncol. 2010;28:4086–93.

    Article  PubMed  Google Scholar 

  24. Pal SK, Katheria V, Hurria A. Evaluating the older patient with cancer: Understanding frailty and the geriatric assessment. CA Cancer J Clin. 2010;60:120–32.

    Article  PubMed  Google Scholar 

  25. Sak K. Chemotherapy and dietary phytochemical agents. Chemother Res Pract. 2012;2012:282570.

    PubMed  PubMed Central  Google Scholar 

  26. Balducci L. New paradigms for treating elderly patients with cancer: the comprehensive geriatric assessment and guidelines for supportive care. J Support Oncol. 2013;1(S2):30–7.

    Google Scholar 

  27. Morgan JL, Reed MW, Wyld L. Primary endocrine therapy as a treatment for older women with operable breast cancer—a comparison of randomised controlled trial and cohort study findings. Eur J Surg Oncol. 2014;40(6):676–84.

    Article  CAS  PubMed  Google Scholar 

  28. Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, Forbes JF, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol. 2010;11(12):1135–41.

    Article  PubMed  CAS  Google Scholar 

  29. Zabrodsky M, Calabrese L, Tosoni A, Ansarin M, Giugliano G, Bruschini R, et al. Major surgery in elderly head and neck cancer patients: immediate and long-term surgical results and complication rates. Surg Oncol. 2004;13(4):249–55.

    Article  PubMed  Google Scholar 

  30. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 2003;349(22):2091–8.

    Article  CAS  PubMed  Google Scholar 

  31. Sanoff HK, Carpenter WR, Stürmer T, Goldberg RM, Martin CF, Fine JP, et al. Effect of adjuvant chemotherapy on survival of patients with stage III colon cancer diagnosed after age 75 years. Clin Oncol. 2012;30(21):2624–34.

    Article  Google Scholar 

  32. Cassidy J, Saltz LB, Giantonio BJ, Kabinnavar FF, Hurwitz HI, Rohr UP. Effect of bevacizumab in older patients with metastatic colorectal cancer: pooled analysis of four randomized studies. J Cancer Res Clin Oncol. 2010;136(5):737–43.

    Google Scholar 

  33. Fornaro L, Baldi GG. Cetuximab plus irinotecan after irinotecan failure in elderly metastatic colorectal cancer patients: clinical outcome according to KRAS and BRAF mutational status. Crit Rev Oncol Hematol. 2011;8(3):243–51.

    Article  Google Scholar 

  34. Lang K, Korn JR, Lee DW, Lines LM, Earle CC, Menzin J. Factors associated with improved survival among older colorectal cancer patients in the US: a population-based analysis. BMC Cancer. 2009;9:227.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim JH. Chemotherapy for colorectal cancer in the elderly. World J Gastroenterol. 2015;21:5158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hung AK, Guy J. Hepatocellular carcinoma in the elderly: meta-analysis and systematic literature review. World J Gastroenterol. 2015;21(42):12197–210.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Horgan A, Knox J, Aneja P, Le L, Mc Keever E, McNamara M, et al. Patterns of care and treatment outcomes in older patients with biliary tract cancer. Oncotarget. 2015;6(42):44995–5004. doi:10.18632/oncotarget.5707.

    PubMed  PubMed Central  Google Scholar 

  38. Hayman TJ, Strom T, Springett GM, Balducci L, Hoffe SE, Meredith KL, et al. Outcomes of resected pancreatic cancer in patients age ≥70. J Gastrointest Oncol. 2015;6(5):498–504.

    PubMed  PubMed Central  Google Scholar 

  39. Maione P, Perrone F, Gallo C, Manzione L, Piantedosi F, Barbera S, et al. Pretreatment quality of life and functional status assessment significantly predict survival of elderly patients with advanced non-small-cell lung cancer receiving chemotherapy: a prognostic analysis of the multicenter Italian lung cancer in the elderly study. J Clin Oncol. 2005;23:6865–72.

    Article  PubMed  Google Scholar 

  40. Messing EM. Urothelial tumors of the bladder. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-Walsh urology. Ninthth ed. Philadelphia: Saunders-Elsevier; 2008. p. 2407–46. Chapter 75.

    Google Scholar 

  41. Schultzel M, Saltzstein SL, Downs TM, Shimasaki S, Sanders C, Sadler GR. Late age (85 years or older) peak incidence of bladder cancer. J Urol. 2008;179(4):1302–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quivy A, Daste A, Haubaoui A, Duc S, Bernhard JC, Gross-Goupil M, et al. Optimal management of renal cell carcinoma in the elderly: a review. Clin Interv Aging. 2013;8:433–42.

    PubMed  PubMed Central  Google Scholar 

  43. Lane BR, Abouassaly R, Gao T, Weight CJ, Hernandez AV, Larson BT, et al. Active treatment of localized renal tumors may not impact overall survival in patients aged 75 years or older. Cancer. 2010;116(13):3119–26.

    Article  PubMed  Google Scholar 

  44. Schmidinger M, Larkin J, Ravaud A. Experience with sunitinib in the treatment of metastatic renal cell carcinoma. Ther Adv Urol. 2012;4:253–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zanardi E, Verzoni E, Grassi P, Necchi A, Giannatempo P, Raggi D, et al. Clinical experience with temsirolimus in the treatment of advanced renal cell carcinoma. Ther Adv Urol. 2015;7:152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zustovich F, Novara G. Advanced kidney cancer: treating the elderly. Expert Rev Anticancer Ther. 2013;13:1389–98.

    Article  CAS  PubMed  Google Scholar 

  47. American Cancer Society. Cancer treatment and survivorship facts and figures 2014–2015. Atlanta: American Cancer Society; 2014.

    Google Scholar 

  48. Fedeli U, Fedewa SA, Ward EM. Treatment of muscle invasive bladder cancer: evidence from the National Cancer Database, 2003 to 2007. J Urol. 2011;185(1):72–8.

    Article  PubMed  Google Scholar 

  49. Smith AB, Deal AM, Woods ME, et al. Muscle-invasive bladder cancer: evaluating treatment and survival in the National Cancer Data Base. BJU Int. 2014;114(5):719–26.

    Article  PubMed  Google Scholar 

  50. Booth CM, Siemens DR, Li G, et al. Curative therapy for bladder cancer in routine clinical practice: a population-based outcomes study. Clin Oncol (R Coll Radiol). 2014;26(8):506–14.

    Article  CAS  Google Scholar 

  51. Grossman HB, Natale RB, Tangen CM, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859–66.

    Article  CAS  PubMed  Google Scholar 

  52. Mohler J, Bahnson RR, Boston R, Busby JE, D’Amico A, Eastham JA, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010;8(2):162–200.

    CAS  PubMed  Google Scholar 

  53. Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352(2):154–64.

    Article  CAS  PubMed  Google Scholar 

  54. Horgan AM, Seruga B, Pond GR, Alibhai SM, Amir E, De Wit R, et al. Tolerability and efficacy of docetaxel in older men with metastatic castrate-resistant prostate cancer (mCRPC) in the TAX 327 trial. J Geriatr Oncol. 2014;5(2):119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Petignat P, Fioretta G, Verkooijen HM, Vlastos AT, Rapiti E, Bouchardy C, et al. Poorer survival of elderly patients with ovarian cancer: a population-based study. Surg Oncol. 2004;13(4):181–6.

    Article  CAS  PubMed  Google Scholar 

  56. Moore DH, Kauderer JT, Bell J, Curtin JP, Van Le L. An assessment of age and other factors influencing protocol versus alternative treatments for patients with epithelial ovarian cancer referred to member institutions: a Gynecologic Oncology Group study. Gynecol Oncol. 2004;94(2):368–74.

    Article  PubMed  Google Scholar 

  57. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354:34–43.

    Article  CAS  PubMed  Google Scholar 

  58. Fulop T, Kotb R, Fortin CF, Pawelec G, De Angelis F, Larbi A. Potential role of immunosenescence in cancer development. Ann NY Acad Sci. 2010;1197:158–65.

    Article  CAS  PubMed  Google Scholar 

  59. Hakim FT, Flomerfelt FA, Boyadzis M, Gress RE. Aging, immunity and cancer. Curr Opin Immunol. 2004;16:151–6.

    Article  CAS  PubMed  Google Scholar 

  60. Bueno V, Sant’Anna OA, Lord JM. Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. Age. 2014;36:9729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Res. 2005;65:3044–8.

    CAS  PubMed  Google Scholar 

  62. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010;70:4335–45.

    Article  CAS  PubMed  Google Scholar 

  63. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, et al. Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009;9:470–81.

    Article  CAS  PubMed  Google Scholar 

  64. Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13:828–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu T, Ramakrishnan R, Altiok S, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest. 2011;121:4015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodriguez PC, Zea AH, Cullota KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem. 2002;277:21123–9.

    Google Scholar 

  67. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.

    Google Scholar 

  68. Condamine T, Ramachandran I, Youn JI, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 2015;66:97–110.

    Article  CAS  PubMed  Google Scholar 

  69. Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A. 2010;107(12):5465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chinn IK, Blackburn CC, Manley NR, Sempowski GD. Changes in primary lymphoid organs with aging. Semin Immunol. 2012;24(5):309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93:633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pico de Coaña Y, Pschkel I, Gentilcore G, Mao Y, Nyström M, Hanssom J, et al. Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their Arginase1 production. Cancer Immunol Res. 2013;1:158–62.

    Article  PubMed  CAS  Google Scholar 

  73. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage of small cell lung cancer. Cancer Immunol Immunother. 2013;62:909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P. MDSC as a mechanism of tumor escape from sunitinib mediated-anti-angiogenic therapy. Int Immunopharmacol. 2011;11:856–91.

    Article  CAS  PubMed  Google Scholar 

  75. Jordan KR, Amaria RN, Rairez O, Callihan EB, Gao D, Borakove M, et al. Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother. 2013;62:1711–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 2013;73:2435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, et al. Myeloid-derived suppressor cells suppress anti-tumor immune responses through IDO expression and correlated with lymph node metastasis in patients with breast cancer. J Immunol. 2013;190:3783–97.

    Article  CAS  PubMed  Google Scholar 

  78. Jagger A, Shomojima Y, Goronzy JJ, Weyland CM. Regulatory T cells and the immune aging process: a mini review. Gerontology. 2014;60:130–7.

    Article  CAS  PubMed  Google Scholar 

  79. El Andaloussi A, Lesniak MS. An increase in CD4+CD25+Foxp3+ regulatory T cells in tumor-infiltrating lymphocytes of glioblastoma multiforme. Neuro Oncol. 2006;8:234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of Foxp3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34.

    Article  CAS  PubMed  Google Scholar 

  81. Chen T, Wang H, Zhang Z, Li Q, Yan K, Tao Q, et al. A novel cellular senescence gene, SENEX, is involved in peripheral regulatory T cells accumulation in aged urinary bladder cancer. PLoS One. 2014;9(2), e87774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ebelt K, Barbara G, Figel AM, Phla H, Buchner A, Stief CG, et al. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate cancer. Prostate. 2008;68(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  83. Ramirez AG, Wages NA, Hu Y, Smolkin ME, Slingluff Jr CL. Defining the effects of age and gender on immune response and outcomes to melanoma vaccination: a retrospective analysis of a single-institution clinical trials’ experience. Cancer Immunol Immunother. 2015;64:1531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saavedra D, Garcia B, Lorenzo-Luaces P, González A, Popa X, Fuentes KP, et al. Biomarkers related to immunosenescence: relationships with therapy and survival in lung cancer patients. Cancer Immunol Immunother. 2015. doi:10.1007/s00262-015-1773-6.

    PubMed  Google Scholar 

  85. Cicinnati VR, Zhang X, Yu Z, Ferencik S, Schmitz KJ, Dworacki G, et al. Increased frequencies of CD8+ T lymphocytes recognizing wild-type p53-derived epitopes in peripheral blood correlate with presence of epitope loss tumor variants in patients with hepatocellular carcinoma. Int J Cancer. 2006;119:2851–60.

    Article  CAS  PubMed  Google Scholar 

  86. Wittekind C, Neid M. Cancer invasion and metastasis. Oncology. 2005;69(S1):14–6.

    Article  PubMed  Google Scholar 

  87. Yoo BH, Wang Y, Erdogan M, Sasazuki T, Shirasawa S, Corcos L, et al. Oncogenic ras-induced down-regulation of pro-apoptotic protease caspase-2 is required for malignant transformation of intestinal epithelial cells. J Biol Chem. 2011;286:38894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200:429–47.

    Article  PubMed  CAS  Google Scholar 

  89. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71–8.

    Article  CAS  PubMed  Google Scholar 

  90. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.

    Article  CAS  PubMed  Google Scholar 

  91. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175:342–9.

    Article  CAS  PubMed  Google Scholar 

  92. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. Eur J Immunol. 2007;37:S9–17.

    Article  CAS  Google Scholar 

  93. Gordon S. The macrophage: past, present and future. J Leukoc Biol. 2011;89:557–63.

    Article  CAS  Google Scholar 

  94. Ma J, Liu C, Che G, Yu N, Dai F, You Z. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 2010;10:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yamaguchi T, Fushida S, Yamamoto Y, Tsukada T, Kinoshita J, Oyama K, et al. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer. 2015. doi:10.1007/s10120-015-0579-8.

    Google Scholar 

  96. Pantano F, Berti P, Guida FM, Perrone G, Vincenzi B, Amato MM, et al. The role of macrophages polarization in prediction prognosis of radically resected gastric cancer patients. J Cell Mol Med. 2013;17(11):1415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, et al. Significance of M2-polarised tumor-associated macrophage in pancreatic cancer. J Surg Res. 2011;167(2):e211–9.

    Article  PubMed  Google Scholar 

  98. Caligiuri MA. Human natural killer cells. Blood. 2008;112:461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Le Garff-Tavernier M, Béziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell. 2010;9(4):527–35.

    Article  PubMed  CAS  Google Scholar 

  100. Freud AG, Caligiuri MA. Human natural killer cell development. Immunol Rev. 2006;214:56–72.

    Article  CAS  PubMed  Google Scholar 

  101. Lebbink RJ, de Rulter T, Adelmeijer J, Brenkman AB, van Helvoot JM, Koch M, et al. Collagens arte functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med. 2006;203:1419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vivier E, Anfossi N. Inhibitory NK-cell receptors on T cells: wit-ness of the past, actors of the future. Nat Rev Immunol. 2004;4:190–8.

    Article  CAS  PubMed  Google Scholar 

  103. Bottino C, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NK receptors. Trends Immunol. 2005;26:221–6.

    Article  CAS  PubMed  Google Scholar 

  104. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  PubMed  Google Scholar 

  105. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73–91.

    Article  CAS  PubMed  Google Scholar 

  106. Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11:751–9.

    Article  CAS  PubMed  Google Scholar 

  107. Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev. 2013;12:1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Halama N, Braun M, Kahlert C, et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin Cancer Res. 2011;17(4):678–89.

    Article  CAS  PubMed  Google Scholar 

  109. Papanikolaou IS, Lazaris AC, Apostolopoulos P, et al. Tissue detection of natural killer cells in colorectal adenocarcinoma. BMC Gastroenterol. 2004;4:20.

    Google Scholar 

  110. Carrega P, Morandi B, Costa R, et al. Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56brightCD16- cells and display an impaired capability to kill tumor cells. Cancer. 2008;112(4):863–75.

    Article  PubMed  Google Scholar 

  111. Platonova S, Cherfils-Vicini J, Damotte D, et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 2011;71(16):5412–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valquiria Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Forones, N.M., Bueno, V. (2017). Cancer, Ageing and Immunosenescence. In: Bueno, V., Lord, J., Jackson, T. (eds) The Ageing Immune System and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-43365-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43365-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43363-9

  • Online ISBN: 978-3-319-43365-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics