Skip to main content

Immunosenescence and the Ageing Lung

  • Chapter
  • First Online:
The Ageing Immune System and Health

Abstract

Ageing is generally defined as the progressive decline of homeostasis that occurs after the reproductive phase of life is complete and the “soma becomes disposable” and death is inevitable according to one theory of ageing. The complexity of the ageing process becomes strikingly evident in the lung where tissue maintenance and repair suffer from damage at the genetic level as well as tissue level. Moreover, lung function declines steadily in adulthood and if data for older adults are extrapolated, the outcome suggests an upper age limit beyond which life becomes impossible. In this chapter we cover the main changes to lung structure and function with age and the impact on respiratory health. We also describe the role that an aged immune system may play in the age-related decline in lung function and the major involvement of altered signalling through developmental pathways with special focus on PPARγ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss ST. Lung function and airway diseases. Nat Genet. 2010;42:14–6.

    Article  CAS  PubMed  Google Scholar 

  2. Boyle D. Is this the oldest person to have ever lived? Uzbekistan claims it has proof woman who died this week was 135—13 years older than French record holder. The Daily Mail. Accessed 11 April 2015.

    Google Scholar 

  3. Jeune B, Robine J-M, Young R, Desjardins B, Skytthe A, Vaupel JW. Jeanne Calment and her successors. Biographical notes on the longest living humans Bernard H. Maier et al. (eds.), Supercentenarians, Demographic Research Monographs, DOI 10.1007/978-3-642-11520-2_16, Springer-Verlag Berlin Heidelberg 2010.

  4. Verbeken EK, Cauberghs M, Mertens I, Lauweryns JM, Van de Woestijne KP. Tissue and airway impedance of excised normal, senile, and emphysematous lungs. J Appl Physiol. 1992;72:2343–53.

    CAS  PubMed  Google Scholar 

  5. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kovacs T, Csongei V, Feller D, Ernszt D, Smuk G, Sarosi V, et al. Alteration in the Wnt microenvironment directly regulates molecular events leading to pulmonary senescence. Aging Cell. 2014;13(5):838–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tolep K, Higgins N, Muza S, Criner G, Kelsen SG. Comparison of diaphragm strength between healthy adult elderly and young men. Am J Respir Crit Care Med. 1995;152(2):677–82.

    Article  CAS  PubMed  Google Scholar 

  8. Polkey MI, Harris ML, Hughes PD, Hamnegärd CH, Lyons D, Green M, et al. The contractile properties of the elderly human diaphragm. Am J Respir Crit Care Med. 1997;155(5):1560–4.

    Article  CAS  PubMed  Google Scholar 

  9. Bailey KL, Bonasera SJ, Wilderdyke M, Hanisch BW, Pavlik JA, DeVasure J, et al. Aging causes a slowing in ciliary beat frequency, mediated by PKCε. Am J Physiol Lung Cell Mol Physiol. 2014;306(6):L584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramos FL, Krahnke JS, Kim V. Clinical issues of mucus accumulation in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:139–50.

    PubMed  PubMed Central  Google Scholar 

  11. Hansel NN, Paré PD, Rafaels N, Sin DD, Sandford A, Daley D, et al. Genome-wide association study identification of novel loci associated with airway responsiveness in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2015;53(2):226–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demeo DL, Mariani TJ, Lange C, Srisuma S, Litonjua AA, Celedon JC, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet. 2006;78(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  13. Willis-Martineza D, Richards HW, Timchenkoa NA, Medranoa EE. Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol. 2010;45(4):279–85.

    Article  Google Scholar 

  14. Yao H, Rahman I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol. 2012;303(7):L557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine. New Engl J Med. 2011;364(23):2235–44.

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki T, Maier B, Bartke A, Scrable H. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell. 2006;5(5):413–22.

    Article  CAS  PubMed  Google Scholar 

  17. Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86.

    Article  PubMed  Google Scholar 

  18. Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol. 2011;54(2):72–85.

    Article  Google Scholar 

  19. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120(15):1524–32.

    Article  CAS  PubMed  Google Scholar 

  20. Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285(17):12604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Honeyman L, Bazett M, Tomko TG, Haston CK. MicroRNA profiling implicates the insulin-like growth factor pathway in bleomycin-induced pulmonary fibrosis in mice. Fibrogenesis Tissue Repair. 2013;6(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23(11):1876–84.

    Article  CAS  PubMed  Google Scholar 

  23. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hwa JJ, Suh Y. MicroRNA in aging: from discovery to biology. Curr Genomics. 2012;13(7):548–57.

    Article  Google Scholar 

  25. Zhou R, O’Hara SP, Chen X-M. MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol. 2011;8:371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30(7):325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015;16(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  28. Kvell K, Varecza Z, Bartis D, Hesse S, Parnell S, Anderson G, et al. Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence. PLoS One. 2010;5(5), e10701.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Busse PJ, Zhang TF, Srivastava K, Schofield B, Li XM. Effect of ageing on pulmonary inflammation, airway hyperresponsiveness and T and B cell responses in antigen-sensitized and -challenged mice. Clin Exp Allergy. 2007;37(9):1392–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kopf M, Schneider C, Nobs SP. The development and function of lung resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):1–9.

    Article  Google Scholar 

  31. Agrawal A, Sridharan A, Prakash S, Agrawal H. Dendritic cells and aging: consequences for autoimmunity. Expert Rev Clin Immunol. 2012;8(1):73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, et al. The role of PPAR gin macrophage differentiation and cholesterol uptake. Nat Med. 2001;T7:41–7.

    Google Scholar 

  33. Duan W, Croft M. Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc. 2014;11 Suppl 5:S306–13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Munger JS, Huang X, Kawakatsu H, Griffiths MJD, Dalton SL, Wu J, et al. A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1. Cell. 1999;96(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  35. Kauffman HF. Innate immune responses to environmental allergens. Clin Rev Allergy Immunol. 2006;30(2):129–40.

    Article  CAS  PubMed  Google Scholar 

  36. Chuang SY, Lin CH, Fang JY. Natural compounds and aging: between autophagy and inflammasome. Biomed Res Int. 2014;2014: article ID:297293.

    Google Scholar 

  37. Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016. doi:10.1007/s00281-016-0560-6.

    PubMed  PubMed Central  Google Scholar 

  38. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101–37.

    Article  CAS  PubMed  Google Scholar 

  39. Sapey E, Greenwood H, Walton G, Mann E, Love A, Aaronson N, et al. Phosphoinositide 3 kinase inhibition restores neutrophil accuracy in the elderly: towards targeted treatments for immunosenescence. Blood. 2014;123:239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sapey E, Stockley JA, Greenwood H, Ahmad A, Bayley D, Lord JM, et al. Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183:1176–86.

    Article  PubMed  Google Scholar 

  41. Sender V, Stamme C. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun Integr Biol. 2014;7, e29053.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Latella G, Vetuschi A, Sferra R, Speca S, Gaudio E. Localization of ανβ6 integrin-TGF-β1/Smad3, mTOR and PPARγ in experimental colorectal fibrosis. Eur J Histochem. 2013;57(4), e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature. 1998;395:137–43.

    Article  CAS  PubMed  Google Scholar 

  44. Berger J, Moller DE. The mechanisms of action of PPARs. Ann Rev Med. 2002;53:409–35.

    Article  CAS  PubMed  Google Scholar 

  45. Desvergne B, Wahli W. Peroxisome proliferator- activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649–88.

    CAS  PubMed  Google Scholar 

  46. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43:527–50.

    Article  CAS  PubMed  Google Scholar 

  47. Bell-Parikh LC, Ide T, Lawson JA, McNamara P, Reilly M, FitzGerald GA. Biosynthesis of 15-deoxy-∆12,14-PGJ2 and the ligation of PPARγ. J Clin Invest. 2003;112:945–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benayoun L, Letuve S, Druilhe A, Boczkowski J, Dombret MC, Mechighel P, et al. Regulation of peroxisome proliferator-activated receptor γ expression in human asthmatic airways: relationship with proliferation, apoptosis, and airway remodelling. Am J Respir Crit Care Med. 2001;164:1487–94.

    Article  CAS  PubMed  Google Scholar 

  49. Faveeuw C, Fougeray S, Angeli V, Fontaine J, Chinetti G, Gosset P, et al. Peroxisome proliferator-activated receptor γ activators inhibit interleukin-12 production in murine dendritic cells. FEBS Lett. 2000;486:261–6.

    Article  CAS  PubMed  Google Scholar 

  50. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkinson WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem. 1995;270:12953–6.

    Article  CAS  PubMed  Google Scholar 

  51. Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-γ as a regulator of lung inflammation and repair. Proc Am Thorac Soc. 2005;2:226–31.

    Article  CAS  PubMed  Google Scholar 

  52. Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B, et al. Peroxisome proliferator-activated receptors α and γ down-regulate allergic inflammation and eosinophil activation. J Exp Med. 2003;198:411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gosset P, Charbonnier AS, Delerive P, Fontaine J, Staels B, Pestel J, et al. Peroxisome proliferator-activated receptor γ activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol. 2001;31:2857–65.

    Article  CAS  PubMed  Google Scholar 

  54. Reynders V, Loitsch S, Steinhauer C, Wagner T, Stein- hilber D, Bargon J. Peroxisome proliferator-activated lymphocytes. Resp Res. 2006;7:104.

    Article  Google Scholar 

  55. Jones DC, Ding X, Daynes RA. Nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is ex- pressed in resting murine lymphocytes. The PPARα in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem. 2002;277:6838–45.

    Article  CAS  PubMed  Google Scholar 

  56. Sugiyama H, Nonaka T, Kishimoto T, Komoriya K, Tsuji K, Nakahata T. Peroxisome proliferator-activated receptors are expressed in human cultured mast cells: a possible role of these receptors in negative regulation of mast cell activation. Eur J Immunol. 2000;30:3363–70.

    Article  CAS  PubMed  Google Scholar 

  57. Hetzel M, Walcher D, Grub M, Bach H, Hombach V, Marx N. Inhibition of MMP-9 expression by PPARγ activators in human bronchial epithelial cells. Thorax. 2003;58:778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, et al. PPARγ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol. 2005;288:L1146–53.

    CAS  Google Scholar 

  59. Patel HJ, Belvisi MG, Bishop-Bailey D, Yacoub MH, Mitchell JA. Activation of peroxisome proliferator-activated receptors in human airway smooth muscle cells has a superior anti-inflammatory profile to corticosteroids: relevance for chronic obstructive pulmonary disease therapy. J Immunol. 2003;170:2663–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ward JE, Tan X. Peroxisome proliferator activated receptor ligands as regulators of airway inflammation and remodelling in chronic lung disease. PPAR Res 2007: article ID: 14983.

    Google Scholar 

  61. Belvisi MG. Regulation of inflammatory cell function by corticosteroids. Proc Am Thoracic Soc. 2004;1:207–14.

    Article  CAS  Google Scholar 

  62. Nie M, Corbett L, Knox AJ, Pang L. Differential regulation of chemokine expression by peroxisome proliferator- activated receptor γ agonists: interactions with glucocorticoids and β2-agonists. J Biol Chem. 2005;280:2550–61.

    Article  CAS  PubMed  Google Scholar 

  63. Cunard R, Ricote M, Di Campli D, Archer DC, Kahn DA, Glass CK, et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J Immunol. 2002;168:2795–802.

    Article  CAS  PubMed  Google Scholar 

  64. Harris SG, Phipps RP. ProstaglandinD2, its metabolite 15-d-PGJ2, and peroxisome proliferator activated receptor-γ agonists induce apoptosis in transformed, but not normal, human T lineage cells. Immunology. 2002;105:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mueller C, Weaver V, Vanden Heuvel JP, August A, Cantorna MT. Peroxisome proliferator-activated receptor γ ligands attenuate immunological symptoms of experimental allergic asthma. Arch Biochem Biophys. 2003;418:186–96.

    Article  CAS  PubMed  Google Scholar 

  66. Fu Y, Luo N, Lopes-Virella MF. Upregulation of interleukin-8 expression by prostaglandin D2 metabolite 15- deoxy-∆12,14 prostaglandin J2 (15d-PGJ2) in human THP-1 macrophages. Atherosclerosis. 2002;160:11–20.

    Article  CAS  PubMed  Google Scholar 

  67. Jiang C, Ting AT, Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82–6.

    Article  CAS  PubMed  Google Scholar 

  68. Rehan VK, Sakurai R, Wang Y, Santos J, Huynh K, Torday JS. Reversal of nicotine-induced alveolar lipofibroblast to myofibroblast transdifferentiation by stimulants of parathyroid hormone-related protein signalling. Lung. 2007;185(3):151–9.

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y. Peroxisome proliferator-activated receptor gamma agonists enhance lung maturation in a neonatal rat model. Pediatric Res. 2009;65(2):150–5.

    Article  Google Scholar 

  70. Farrow SN. Nuclear receptors: doubling up in the lung. Curr Opin Pharmacol. 2008;8(3):275–9.

    Article  CAS  PubMed  Google Scholar 

  71. Cheng AY, Fantus IG. Thiazolidinedione-induced congestive heart failure. Ann Pharmacother. 2004;38(5):817–20.

    Article  PubMed  Google Scholar 

  72. Morales E, Sakurai R, Husain S, Paek D, Gong M, Ibe B, et al. Nebulized PPARγ agonists: a novel approach to augment neonatal lung maturation and injury repair in rats. Pediatr Res. 2014;75(5):631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lezzerini M, Budovskaya Y. A dual role of the Wnt signaling pathway during aging in Caenorhabditis elegans. Aging Cell. 2014;13:8–18.

    Article  CAS  PubMed  Google Scholar 

  74. Pollard KM. Silica, silicosis, and autoimmunity. Front Immunol. 2016;7:97.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Honda K, Marquillies P, Capron M, Dombrowicz D. Peroxisome proliferator-activated receptor γ is expressed in airways and inhibits features of airway remodeling in a mouse asthma model. J Allergy Clin Immunol. 2004;113:882–8.

    Article  CAS  PubMed  Google Scholar 

  76. Straus DS, Glass CK. Anti-inflammatory actions of PPAR ligands: New insights on cellular and molecular mechanism. Trends Immunol. 2007;28:551–8.

    Article  CAS  PubMed  Google Scholar 

  77. Freire-de-Lima CG, Xiao YQ, Gardai YQ, Bratton DL, Schiemann WP, Henson PM. Apoptotic cells, through transforming growth factor beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem. 2006;281:38376–84.

    Article  CAS  PubMed  Google Scholar 

  78. Yoon ZS, Kim SY, Kim MJ, Lim JH, Cho MS, Kang JL. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol. 2015;8(5):1031–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pritchard JN, Giles RD. Opportunities in respiratory drug delivery. Ther Deliv. 2014;5(12):1261–73.

    Article  CAS  PubMed  Google Scholar 

  80. Drummond MB, Dasenbrook EC, Pitz MW, Murphy DJ, Fan E. Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300:2407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mueller C, Weaver V, Vanden Heuvel JP, August A, Cantorna MT. Peroxisome proliferator-activated receptor γ ligands attenuate immunological symptoms of experimental allergic asthma. Arch Biochem Biophys. 2003;418:186–96.

    Article  CAS  PubMed  Google Scholar 

  82. Ward JE, Fernandes DJ, Taylor CC, Bonacci JV, Quan L, Stewart AG. The PPARgamma ligand, rosiglitazone, reduces airways hyperresponsiveness in a murine model of allergen-induced inflammation. Pulm Pharmacol Ther. 2006;19(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  83. Shen Y, Chen L, Wang T, Wen F. PPARγ as a Potential target to treat airway mucus hypersecretion in chronic airway inflammatory diseases. PPAR Res. 2012:article ID:256874.

    Google Scholar 

  84. Sgalla G, Biffi A, Richeldi L. Idiopathic pulmonary fibrosis: diagnosis, epidemiology and natural history. Respirology. 2016;21(3):427–37.

    Article  PubMed  Google Scholar 

  85. Phan SH. The myofibroblast in pulmonary fibrosis. Chest. 2002;122(6):286–9.

    Article  Google Scholar 

  86. Culver DA, Barna BP, Raychaudhuri B. Peroxisome proliferator-activated receptor gamma activity is deficient in alveolar macrophages in pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 2004;30:1–5.

    Article  CAS  PubMed  Google Scholar 

  87. Aoki Y, Maeno T, Aoyagi K. Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis. Respiration. 2009;77:311–9.

    Article  CAS  PubMed  Google Scholar 

  88. Milam JE, Keshamouni VG, Phan SH. PPAR-gamma Agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am J Physio Lung Cell Mol Physiol. 2008;294:L891–901.

    Article  CAS  Google Scholar 

  89. Dantas AT, Pereira MC, de Melo Rego MJ, da Rocha LF, Pitta RI, Marques CD, Duarte AL, Pitta MG. The Role of PPAR Gamma in Systemic Sclerosis. PPAR Res, 2015:article ID: 124624.

    Google Scholar 

  90. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, CA-A. Cancer J Clin. 2009;59:225–49.

    Article  Google Scholar 

  91. Zhai K, Ding J, Shi HZ. HPV and lung cancer risk: a meta-analysis. J Clin Virol. 2015;63:84–90.

    Article  PubMed  Google Scholar 

  92. Bein K, Leikauf GD. Acrolein—a pulmonary hazard. Mol Nutr Food Res. 2011;55(9):1342–60.

    Article  CAS  PubMed  Google Scholar 

  93. Li H, Sorenson AL, Poczobutt J, Amin J, Joyal T, Sullivan T, et al. Activation of PPARγ in myeloid cells promotes lung cancer progression and metastasis. PLoS One. 2011;6(12), e28133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Florian MC, Nattamai KJ, Dorr K, Marka G, Uberle B, Vas V, et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature. 2013;503(21):392–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5(8):442–7.

    Article  CAS  PubMed  Google Scholar 

  96. Torday J, Rehan V. Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression. Exp Lung Res. 2011;37(6):376–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit E. Pongracz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kvell, K., Pongracz, J.E. (2017). Immunosenescence and the Ageing Lung. In: Bueno, V., Lord, J., Jackson, T. (eds) The Ageing Immune System and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-43365-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43365-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43363-9

  • Online ISBN: 978-3-319-43365-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics