Skip to main content

Pendrin and Its Partners in the Kidney: Roles in Vascular Volume and Acid Base Regulation

  • Chapter
  • First Online:
The Role of Pendrin in Health and Disease

Abstract

The Cl/HCO3 exchanger pendrin (SLC26A4, PDS) is located on the apical membrane of B-intercalated cells in the kidney cortical collecting duct (CCD) and the connecting tubules (CNTs) and mediates the secretion of bicarbonate and the reabsorption of chloride. Recent studies demonstrate the coordinated interaction of pendrin with several ion transporters and/or channels in the kidney distal nephron, resulting in systemic electrolyte and vascular volume homeostasis and acid base regulation. In this chapter, we will discuss the latest developments on the role of pendrin and its interacting partners in salt and water absorption in the distal nephron and their relevance to pathophysiologic states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ghimlas F, Faughnan ME, Tullis E (2012) Metabolic alkalosis in adults with stable cystic fibrosis. Open Respir Med J 6:59–62. doi:10.2174/1874306401206010059

    Article  PubMed  PubMed Central  Google Scholar 

  • Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515

    Google Scholar 

  • Amlal H, Petrovic S, Xu J, Wang Z, Sun X, Barone S, Soleimani M (2010) Deletion of the anion exchanger Slc26a4 (pendrin) decreases apical Cl(−)/HCO3(−) exchanger activity and impairs bicarbonate secretion in kidney collecting duct. Am J Physiol Cell Physiol 299(1):C33–C41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnis C, Marshansky V, Breton S, Brown D (2001) Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol Renal Physiol 280(3):F437–F448

    CAS  PubMed  Google Scholar 

  • Baird JS, Walker P, Urban A et al (2002) Metabolic alkalosis and cystic fibrosis. Chest 122:755–756. doi:10.1378/chest.122.2.755

    Article  PubMed  Google Scholar 

  • Bertrand CA, Zhang R, Pilewski JM, Frizzell RA (2009) SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia. J Gen Physiol 133(4):421–438. doi:10.1085/jgp.200810097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizhanova A, Kopp P (2010) Genetics and phenomics of Pendred syndrome. Mol Cell Endocrinol 322(1–2):83–90, Review

    Article  CAS  PubMed  Google Scholar 

  • Blanchard A, Jeunemaitre X, Coudol P et al (2001) Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int 59:2206–2215

    Article  CAS  PubMed  Google Scholar 

  • Bustamante M, Hasler U, Leroy V, de Seigneux S, Dimitrov M, Mordasini D, Rousselot M, Martin P-Y, Feraille E (2008) Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin dependent mechanism. J Am Soc Nephrol 19:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Câmpean V, Kricke J, Ellison D et al (2001) Localization of thiazide sensitive Na(+)-Cl(−) cotransport and associated gene products in mouse DCT. Am J Physiol Renal Physiol 281(6):F1028–F1035

    Article  PubMed  Google Scholar 

  • Chernova MN, Jiang L, Friedman DJ, Darman RB, Lohi H, Kere J, Vandorpe DH, Alper SL (2005) Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity. J Biol Chem 280(9):8564–8580

    Article  CAS  PubMed  Google Scholar 

  • Costanzo LS (1984) Comparison of calcium and sodium transport in early and late rat distal tubules: effect of amiloride. Am J Physiol Ren Fluid Electrolyte Physiol 246:F937–F945

    CAS  Google Scholar 

  • Costanzo LS, Windhager EE (1978) Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol Ren Fluid Electrolyte Physiol 235:F492–F506

    CAS  Google Scholar 

  • Delpire E, Mount DB (2002) Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol 64:803–843

    Article  CAS  PubMed  Google Scholar 

  • Delpire E, Kaplan MR, Plotkin MD, Hebert SC (1996) The Na-(K)-Cl cotransporter family in the mammalian kidney: molecular identification and function(s). Nephrol Dial Transplant 11(10):1967–1973, Review

    Article  CAS  PubMed  Google Scholar 

  • Derichs N (2013) Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur Respir Rev 127(22):58–65. doi:10.1183/09059180.00008412, Review

    Article  Google Scholar 

  • Dorwart MR, Shcheynikov N, Wang Y, Stippec S, Muallem S (2007) SLC26A9 is a Cl channel regulated by the WNK kinases. J Physiol 584:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G (2001) Mechanisms of aldosterone’s action on epithelial Na+ transport. J Membr Biol 184:313–319

    Article  CAS  PubMed  Google Scholar 

  • Eladari D, Hübner CA (2011) Novel mechanisms for NaCl reabsorption in the collecting duct. Curr Opin Nephrol Hypertens 20(5):506–511, Review

    Article  CAS  PubMed  Google Scholar 

  • Ellison DH (2003) The thiazide-sensitive Na-Cl cotransporter and human disease: reemergence of an old player. J Am Soc Nephrol 14:538–540, Review

    Google Scholar 

  • Ellison DH, Velazquez H, Wright FS (1987) Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol Ren Fluid Electrolyte Physiol 253:F546–F554

    Google Scholar 

  • Ellison DH, Velazquez H, Wright FS (1989) Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest 83:113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422

    Google Scholar 

  • Frizzell RA, Hanrahan JW (2012) Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2(6):a009563. doi:10.1101/cshperspect.a009563

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85(2):423–493, Review

    Article  CAS  PubMed  Google Scholar 

  • Garnett JP, Hickman E, Burrows R et al (2011) Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J Biol Chem 286:41069–41082. doi:10.1074/jbc.M111.266734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkika D, Hsu YJ, van der Kemp AW et al (2006) Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice. J Am Soc Nephrol 17:3020–3027

    Article  CAS  PubMed  Google Scholar 

  • Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    Article  CAS  PubMed  Google Scholar 

  • Hoenderop JG, Nilius B, Bindels RJ (2002) Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 64:529–549

    Google Scholar 

  • Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  CAS  PubMed  Google Scholar 

  • Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A 103:7159–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman LR, Ramsey BW (2013) Cystic fibrosis therapeutics: the road ahead. Chest 143(1):207–213. doi:10.1378/chest.12-1639, Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg M-L, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhea. Nat Genet 14:316–319

    Google Scholar 

  • Jiang Z, Grichtchenko II, Boron WF, Aronson PS (2002) Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 277(37):33963–33967

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy N, Fugazzola L, Evans M, Chatterjee K, Karet F (2011) Life-threatening metabolic alkalosis in Pendred syndrome. Eur J Endocrinol 165(1):167–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Kwon TH, Frische S, Kim J, Tisher CC, Madsen KM, Nielsen S (2002) Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol Renal Physiol 283(4):F744–F754

    Article  PubMed  Google Scholar 

  • Kim KH, Shcheynikov N, Wang Y, Muallem S (2005) SLC26A7 is a Cl channel regulated by intracellular pH. J Biol Chem 280:6463–6470

    Article  CAS  PubMed  Google Scholar 

  • Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6(4):343–350. doi:10.1038/ncb1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunzelmann K, Schreiber R, Boucherot A (2001) Mechanisms of the inhibition of epithelial Na+ channels by CFTR and purinergic stimulation. Kidney Int 60:455–461. doi:10.1046/j.1523-1755.2001.060002455.x

    Article  CAS  PubMed  Google Scholar 

  • Leviel F, Hübner CA, Houillier P et al (2010) The Na+ −dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120(5):1627–1635

    Google Scholar 

  • Loffing J, Vallon V, Loffing-Cueni D et al (2004) Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 15(9):2276–2288

    Article  CAS  PubMed  Google Scholar 

  • Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE (1999) Mouse Down-regulated in Adenoma (DRA) is an intestinal Cl(−)/HCO(3)(−) exchanger and is upregulated in colon of mice lacking the NHE-3 Na(+)/H(+) exchanger. J Biol Chem 274:22855–22861

    Article  CAS  PubMed  Google Scholar 

  • Patel-Chamberlin M, Varasteh Kia M, Xu J, Barone S, Zahedi K, Soleimani M (2016) The role of epithelial sodium channel ENaC and the apical Cl/HCO3 exchanger pendrin in compensatory salt reabsorption in the setting of Na-Cl cotransporter (NCC) inactivation. PLoS One 11(3):e0150918

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrovic S, Ju X, Barone S, Seidler U, Alper SL, Lohi H, Kere J, Soleimani M (2003) Identification of a basolateral Cl-/HCO3- exchanger specific to gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 284(6):G1093–G1103

    Article  CAS  PubMed  Google Scholar 

  • Pier GB (2012) The challenges and promises of new therapies for cystic fibrosis. J Exp Med 209(7):1235–1239. doi:10.1084/jem.20121248, Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G (2004) Extracellular calcium antagonizes forskolininduced aquaporin 2 trafficking in collecting duct cells. Kidney Int 66:2245–2255

    Article  CAS  PubMed  Google Scholar 

  • Procino G, Mastrofrancesco L, Mira A, Tamma G, Carmosino M, Emma F, Svelto M, Valenti G (2008) Aquaporin 2 and apical calcium-sensing receptor: new players in polyuric disorders associated with hypercalciuria. Semin Nephrol 28:297–305

    Article  CAS  PubMed  Google Scholar 

  • Procino G, Mastrofrancesco L, Tamma G, Lasorsa DR, Ranieri M, Stringini G, Emma F, Svelto M, Valenti G (2012) Calcium-sensing receptor and aquaporin 2 interplay in hypercalciuria-associated renal concentrating defect in humans. An in vivo and in vitro study. PLoS ONE 7:e33145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purkerson JM, Schwartz GJ (2007) The role of carbonic anhydrases in renal physiology. Kidney Int 71(2):103–115, Review

    Article  CAS  PubMed  Google Scholar 

  • Puschett JB (1994) Pharmacological classification and renal actions of diuretics. Cardiology 84(Suppl 2):4–13, Review

    Article  CAS  PubMed  Google Scholar 

  • Ranieri M, Tamma G, Di Mise A, Russo A, Centrone M, Svelto M, Calamita G, Valenti G (2015) Negative feedback from CaSR signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2. J Cell Sci 128(13):2350–2360

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Al-Bataineh MM, Pastor-Soler NM (2015) Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 10(2):305–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98:4221–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sands JM, Flores FX, Kato A, Baum MA, Brown EM, Ward DT, Hebert SC, Harris HW (1998) Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Physiol 274:F978–F985

    CAS  PubMed  Google Scholar 

  • Schultheis PJ, Lorenz JN, Meneton P et al (1998) Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+ −Cl cotransporter of the distal convoluted tubule. J Biol Chem 273(44):29150–29155

    Google Scholar 

  • Schwartz GJ (2002) Physiology and molecular biology of renal carbonic anhydrase. J Nephrol 15(Suppl 5):S61–S74, Review

    CAS  PubMed  Google Scholar 

  • Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S, Worrell RT, Wang Z, Soleimani M (2006) Slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J Biol Chem 281:37962–37971

    Article  CAS  PubMed  Google Scholar 

  • Shcheynikov N, Yang D, Wang Y et al (2008) The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. J Physiol 586:3813–3824. doi:10.1113/jphysiol.2008.154468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindić A, Chang MH, Mount DB et al (2007) Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens 16:484–490

    Article  PubMed  Google Scholar 

  • Soleimani M (2013) SLC26 Cl-/HCO3- exchangers in the kidney: roles in health and disease. Kidney Int 84:657–666

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, Burnham CE (2001) Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex. Am J Physiol Renal Physiol 280:F356–F364

    CAS  PubMed  Google Scholar 

  • Soleimani M, Barone S, Xu J, Shull GE, Siddiqui F, Zahedi K, Amlal H (2012) Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc Natl Acad Sci U S A 109(33):13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Soleimani M, Petrovic S (2008) Decreased expression of Slc26a4 (Pendrin) and Slc26a7 in the kidneys of carbonic anhydrase II-deficient mice. Cell Physiol Biochem 21(1–3):95–108. doi:10.1159/000113751

    Article  CAS  PubMed  Google Scholar 

  • Sweetser L, Douglas J, Riha L, Bell S (2005) Clinical presentation of metabolic alkalosis in an adult patient with cystic fibrosis. Respirology 10:254–256. doi:10.1111/j.1440-1843.2005.00650.x

    Article  PubMed  Google Scholar 

  • Tamma G, Di Mise A, Ranieri M, Svelto M, Pisot R, Bilancio G, Cavallo P, De Santo NG, Cirillo M, Valenti G (2014) A decrease in aquaporin 2 excretion is associated with bed rest induced high calciuria. J Transl Med 12:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd-Turla KM, Rusvai ERZSEBET, Naray-Fejes-Toth A, Fejes-Toth G (1996) CFTR expression in cortical collecting duct cells. Am J Physiol Ren Physiol 270(1):F237–F244

    CAS  Google Scholar 

  • Trepiccione F, Pisitkun T, Hoffert JD, Poulsen SB, Capasso G, Nielsen S, Knepper MA, Fenton RA, Christensen BM (2014) Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2. Kidney Int 86(4):757–767

    Article  CAS  PubMed  Google Scholar 

  • Vallet M, Picard N, Loffing-Cueni D et al (2006) Pendrin regulation in mouse kidney primarily is chloride-dependent. J Am Soc Nephrol 17(8):2153–2163

    Article  CAS  PubMed  Google Scholar 

  • Varasteh Kia M, Barone S, McDonough AA et al Dysregulation of Acid Base (H+/HCO3 ) transport machinery in the kidney collecting duct in cystic fibrosis: role in the pathogenesis of metabolic alkalosis. Submitted for publication

    Google Scholar 

  • Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM (2003) Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 179:356–362

    Article  Google Scholar 

  • Wall SM, Pech V (2008) The interaction of pendrin and the epithelial sodium channel in blood pressure regulation. Curr Opin Nephrol Hypertens 17(1):18–24, Review

    Article  CAS  PubMed  Google Scholar 

  • Wall SM, Weinstein AM (2013) Cortical distal nephron Cl(−) transport in volume homeostasis and blood pressure regulation. Am J Physiol Renal Physiol 305(4):F427–F438, Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW (2003) Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol 284(1):F229–F241

    Article  CAS  PubMed  Google Scholar 

  • Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW (2004) NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension 44(6):982, –7, 2004

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Petrovic S, Mann E, Soleimani M (2002) Identification of an apical Cl(−)/HCO3(−) exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 282(3):G573–G579

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2011) The role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 28:527–534, Review

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Welch R, Mercado A, Romero MF, Mount DB (2002) Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Renal Physiol 283:F826–F838

    Article  PubMed  Google Scholar 

  • Xu J, Henriksnäs J, Barone S, Witte D, Shull GE, Forte JG, Holm L, Soleimani M (2005) SLC26A9 is expressed in gastric surface epithelial cells, mediates Cl-/HCO3- exchange, and is inhibited by NH4+. Am J Physiol Cell Physiol 289(2):C493–C505

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Song P, Miller ML, Borgese F, Barone S, Riederer B, Wang Z, Alper SL, Forte JG, Shull GE, Ehrenfeld J, Seideler U, Soleimani M (2008) Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach. Proc Natl Acad Sci U S A 105(46):17955–17960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Barone S, Li H, Holiday S, Zahedi K, Soleimani M (2011) Slc26a11, a chloride transporter, localizes with the vacuolar H(+)-ATPase of A-intercalated cells of the kidney. Kidney Int 80(9):926–937

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Barone S, Brooks MB, Soleimani M (2013) Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(−) cotransporter (NCC) causes salt wasting and volume depletion. Cell Physiol Biochem 32(7):173–183

    Article  PubMed  Google Scholar 

  • Yalçin E, Kiper N, Doğru D, Ozçelik U, Aslan AT (2005) Clinical features and treatment approaches in cystic fibrosis with pseudo-Bartter syndrome. Ann Trop Paediatr 25(2):119–124

    Article  PubMed  Google Scholar 

  • Zahedi K, Barone S, Xu J, Soleimani M (2013) Potentiation of the effect of thiazide derivatives by carbonic anhydrase inhibitors: molecular mechanisms and potential clinical implications. PLoS One 8(11):e79327

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoocher Soleimani MD or Giovanna Valenti PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soleimani, M., Valenti, G. (2017). Pendrin and Its Partners in the Kidney: Roles in Vascular Volume and Acid Base Regulation. In: Dossena, S., Paulmichl, M. (eds) The Role of Pendrin in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-43287-8_8

Download citation

Publish with us

Policies and ethics