Skip to main content

The Slc26a4 loop Mouse Model for Pendred’s Syndrome and Nonsyndromic Deafness

  • Chapter
  • First Online:
The Role of Pendrin in Health and Disease

Abstract

Pendred’s syndrome results from bi-allelic pathogenic variants in the SLC26A4 gene and is characterized by sensorineural deafness and a partial thyroid iodine organification defect, with or without goiter. Vestibular dysfunction is occasionally present, although it is not part of the classic clinical definition of Pendred’s syndrome. The pendrin protein, encoded by the SLC26A4 gene, is responsible for transporting anions across cell membranes, including in the inner ear and thyroid. In the ear, pendrin functions as a HCO3 /Cl exchanger and has a key role in maintaining endolymph homeostasis. In the thyroid, pendrin function is still not clear, and efforts are being made to identify the molecular mechanisms that underlie the broad thyroid phenotypic variation of Pendred’s patients. While environmental factors, such as an iodine-deficient diet, contribute to phenotypic heterogeneity, other strong genetics factors should be considered. Several mouse models bearing Slc26a4 mutations have been generated. Unique calcium oxalate minerals have been found in the vestibule of loop, a mouse model with a hypofunctional allele of Slc26a4. The abnormal mineralized bodies were detected ectopically within the vestibular labyrinth. The thyroids of Slc26a4 loop/loop mice are small with atrophic follicles. In this chapter, we summarize the unique findings of Slc26a4 loop/loop mice in the vestibular system and thyroid gland. The existence of phenotypic variation observed among different Slc26a4 mouse models is encouraging evidence for further investigating mutation-specific mechanisms for Pendred’s syndrome. The ability to predict specific phenotypes for a given mutation will contribute to better clinical management and treatment, with an emphasis on preventive medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal P, Philip R, Saran S, Gutch M, Razi MS, Agroiya P, Gupta K (2015) Congenital hypothyroidism. Indian J Endocrinol Metab 19(2):221–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Berrettini S, Forli F, Bogazzi F, Neri E, Salvatori L, Casani AP, Franceschini SS (2005) Large vestibular aqueduct syndrome: audiological, radiological, clinical, and genetic features. Am J Otolaryngol 26(6):363–371

    Article  PubMed  Google Scholar 

  • Blons H, Feldmann D, Duval V, Messaz O, Denoyelle F, Loundon N, Sergout-Allaoui A, Houang M, Duriez F, Lacombe D, Delobel B, Leman J, Catros H, Journel H, Drouin-Garraud V, Obstoy MF, Toutain A, Oden S, Toublanc JE, Couderc R, Petit C, Garabedian EN, Marlin S (2004) Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: a large spectrum of mutations in France and phenotypic heterogeneity. Clin Genet 66(4):333–340

    Google Scholar 

  • Brownstein ZN, Dror AA, Gilony D, Migirov L, Hirschberg K, Avraham KB (2008) A novel SLC26A4 (PDS) deafness mutation retained in the endoplasmic reticulum. Arch Otolaryngol Head Neck Surg 134(4):403–407

    Google Scholar 

  • Buyukgebiz A (2013) Newborn screening for congenital hypothyroidism. J Clin Res Pediatr Endocrinol 5(Suppl 1):8–12

    PubMed  PubMed Central  Google Scholar 

  • Calil-Silveira J, Serrano-Nascimento C, Kopp PA, Nunes MT (2016) Iodide excess regulates its own efflux: a possible involvement of pendrin. Am J Physiol Cell Physiol 310(7):C576–C582

    Article  PubMed  Google Scholar 

  • Choi BY, Stewart AK, Madeo AC, Pryor SP, Lenhard S, Kittles R, Eisenman D, Kim HJ, Niparko J, Thomsen J, Arnos KS, Nance WE, King KA, Zalewski CK, Brewer CC, Shawker T, Reynolds JC, Butman JA, Karniski LP, Alper SL, Griffith AJ (2009) Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms? Hum Mutat 30(4):599–608

    Google Scholar 

  • Dorigueto RS, Gananca MM, Gananca FF (2005) The number of procedures required to eliminate positioning nystagmus in benign paroxysmal positional vertigo. Braz J Otorhinolaryngol 71(6):769–775

    Article  PubMed  Google Scholar 

  • Dossena S, Rodighiero S, Vezzoli V, Nofziger C, Salvioni E, Boccazzi M, Grabmayer E, Botta G, Meyer G, Fugazzola L, Beck-Peccoz P, Paulmichl M (2009) Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. J Mol Endocrinol 43(3):93–103

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Xu J, Wang Z, Smith AN, Soleimani M, Karet FE, Greinwald JH Jr, Choo D (2004) Co-expression of pendrin, vacuolar H + -ATPase alpha4-subunit and carbonic anhydrase II in epithelial cells of the murine endolymphatic sac. J Histochem Cytochem 52(10):1377–1384

    CAS  PubMed  Google Scholar 

  • Dror AA, Politi Y, Shahin H, Lenz DR, Dossena S, Nofziger C, Fuchs H, Hrabe de Angelis M, Paulmichl M, Weiner S, Avraham KB (2010) Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 285(28):21724–21735

    Google Scholar 

  • Dror AA, Lenz DR, Shivatzki S, Cohen K, Ashur-Fabian O, Avraham KB (2014) Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mamm Genome 25(7-8):304–316

    Google Scholar 

  • Epley JM (1995) Positional vertigo related to semicircular canalithiasis. Otolaryngol Head Neck Surg 112(1):154–161

    Article  CAS  PubMed  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17(4):411–422

    Google Scholar 

  • Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10(2):153–161

    Google Scholar 

  • Fraser GR (1965) Association of Congenital Deafness with Goitre (Pendred’s Syndrome): A study of 207 families. Ann Hum Genet 28:201–249

    Google Scholar 

  • Fraser GR, Morgans ME, Trotter WR (1960) The syndrome of sporadic goitre and congenital deafness. Q J Med 29:279–295

    CAS  PubMed  Google Scholar 

  • Gillam MP, Sidhaye AR, Lee EJ, Rutishauser J, Stephan CW, Kopp P (2004) Functional characterization of pendrin in a polarized cell system. Evidence for pendrin-mediated apical iodide efflux. J Biol Chem 279(13):13004–13010

    Article  CAS  PubMed  Google Scholar 

  • Grasberger H, Refetoff S (2011) Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Curr Opin Pediatr 23(4):421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341(8):549–555

    Article  CAS  PubMed  Google Scholar 

  • Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler F, Schindewolf C, Jung T, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25(4):444–447

    Article  CAS  PubMed  Google Scholar 

  • Iosco C, Cosentino C, Sirna L, Romano R, Cursano S, Mongia A, Pompeo G, di Bernardo J, Ceccarelli C, Tallini G, Rhoden KJ (2014) Anoctamin 1 is apically expressed on thyroid follicular cells and contributes to ATP- and calcium-activated iodide efflux. Cell Physiol Biochem 34(3):966–980

    Article  CAS  PubMed  Google Scholar 

  • Ishinaga H, Shimizu T, Yuta A, Tsukamoto K, Usami S, Majima Y (2002) Pendred’s syndrome with goiter and enlarged vestibular aqueducts diagnosed by PDS gene mutation. Head Neck 24(7):710–713

    Google Scholar 

  • Ito T, Nishio A, Wangemann P, Griffith AJ (2015) Progressive irreversible hearing loss is caused by stria vascularis degeneration in an Slc26a4-insufficient mouse model of large vestibular aqueduct syndrome. Neuroscience 310:188–197

    Google Scholar 

  • Iwata T, Yoshida T, Teranishi M, Murata Y, Hayashi Y, Kanou Y, Griffith AJ, Nakashima T (2011) Influence of dietary iodine deficiency on the thyroid gland in Slc26a4-null mutant mice. Thyroid Res 4(1):10

    Google Scholar 

  • Jackler RK, De La Cruz A (1989) The large vestibular aqueduct syndrome. Laryngoscope 99(12):1238–1242, discussion 1242–1233

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Seo YW, Choi JY, Kim SH (2016) Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hearing Res 335:33–39

    Google Scholar 

  • Kim HM, Wangemann P (2011) Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin. PLoS One 6(3), e17949

    Google Scholar 

  • Ko KM, Song MH, Kim JH, Shim DB (2014) Persistent spontaneous nystagmus following a canalith repositioning procedure in horizontal semicircular canal benign paroxysmal positional vertigo. JAMA Otolaryngol Head Neck Surg 140(3):250–252

    Article  PubMed  Google Scholar 

  • Kuhnen P, Turan S, Frohler S, Guran T, Abali S, Biebermann H, Bereket A, Gruters A, Chen W, Krude H (2014) Identification of PENDRIN (SLC26A4) mutations in patients with congenital hypothyroidism and “apparent” thyroid dysgenesis. J Clin Endocrinol Metab 99(1):E169–E176

    Google Scholar 

  • Levenson MJ, Parisier SC, Jacobs M, Edelstein DR (1989) The large vestibular aqueduct syndrome in children. A review of 12 cases and the description of a new clinical entity. Arch Otolaryngol Head Neck Surg 115(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ganta S, Fong P (2010) Altered ion transport by thyroid epithelia from CFTR−/− pigs suggests mechanisms for hypothyroidism in cystic fibrosis. Exp Physiol 95(12):1132–1144

    Google Scholar 

  • Lund K, Fogler HS, McCune CC, Ault JW (1975) Acidization-II. The dissolution of calcite in hydrochloric acid. Chem Eng Sci 30(8):825–835

    Article  CAS  Google Scholar 

  • Luxon LM, Cohen M, Coffey RA, Phelps PD, Britton KE, Jan H, Trembath RC, Reardon W (2003) Neuro-otological findings in Pendred syndrome. Int J Audiol 42(2):82–88

    Article  CAS  PubMed  Google Scholar 

  • Manzari L (2008) Enlarged vestibular aqueduct (EVA) related with recurrent benign paroxysmal positional vertigo (BPPV). Med Hypotheses 70(1):61–65

    Article  PubMed  Google Scholar 

  • Miyagawa M, Nishio SY, Usami S, Deafness Gene Study C (2014) Mutation spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study. J Hum Genet 59(5):262–268

    Google Scholar 

  • Morgan ME, Trotter WR (1958) Association of congenital deafness with goiter; The nature of the thyroid defect. Lancet 1:607–609

    Article  Google Scholar 

  • Park HJ, Shaukat S, Liu XZ, Hahn SH, Naz S, Ghosh M, Kim HN, Moon SK, Abe S, Tukamoto K, Riazuddin S, Kabra M, Erdenetungalag R, Radnaabazar J, Khan S, Pandya A, Usami SI, Nance WE, Wilcox ER, Riazuddin S, Griffith AJ (2003) Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. J Med Genet 40(4):242–248

    Google Scholar 

  • Pendred V (1896) Deaf-mutism and goitre. Lancet ii:532

    Article  Google Scholar 

  • Pera A, Dossena S, Rodighiero S, Gandia M, Botta G, Meyer G, Moreno F, Nofziger C, Hernandez-Chico C, Paulmichl M (2008) Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred syndrome and nonsyndromic EVA. Proc Natl Acad Sci USA 105(47):18608–18613

    Google Scholar 

  • Portulano C, Paroder-Belenitsky M, Carrasco N (2014) The Na+/I symporter (NIS): mechanism and medical impact. Endocr Rev 35(1):106–149

    Google Scholar 

  • Pryor SP, Madeo AC, Reynolds JC, Sarlis NJ, Arnos KS, Nance WE, Yang Y, Zalewski CK, Brewer CC, Butman JA, Griffith AJ (2005) SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet 42(2):159–165

    Google Scholar 

  • Reardon W, Coffey R, Phelps PD, Luxon LM, Stephens D, Kendall-Taylor P, Britton KE, Grossman A, Trembath R (1997) Pendred syndrome--100 years of underascertainment? QJM 90(7):443–447

    Google Scholar 

  • Resch U, Helsel G, Tatzber F, Sinzinger H (2002) Antioxidant status in thyroid dysfunction. Clin Chem Lab Med 40(11):1132–1134

    Article  CAS  PubMed  Google Scholar 

  • Rotman-Pikielny P, Hirschberg K, Maruvada P, Suzuki K, Royaux IE, Green ED, Kohn LD, Lippincott-Schwartz J, Yen PM (2002) Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Hum Mol Genet 11(21):2625–2633

    Article  CAS  PubMed  Google Scholar 

  • Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141(2):839–845

    Google Scholar 

  • Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci USA 98(7):4221–4226

    Google Scholar 

  • Royaux IE, Belyantseva IA, Wu T, Kachar B, Everett LA, Marcus DC, Green ED (2003) Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol 4(3):394–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21(4):440–443

    Article  CAS  PubMed  Google Scholar 

  • Scott DA, Wang R, Kreman TM, Andrews M, McDonald JM, Bishop JR, Smith RJ, Karniski LP, Sheffield VC (2000) Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet 9(11):1709–1715

    Google Scholar 

  • Senou M, Khalifa C, Thimmesch M, Jouret F, Devuyst O, Col V, Audinot JN, Lipnik P, Moreno JC, Van Sande J, Dumont JE, Many MC, Colin IM, Gerard AC (2010) A coherent organization of differentiation proteins is required to maintain an appropriate thyroid function in the Pendred thyroid. J Clin Endocrinol Metab 95(8):4021–4030

    Article  CAS  PubMed  Google Scholar 

  • Silveira JC, Kopp PA (2015) Pendrin and anoctamin as mediators of apical iodide efflux in thyroid cells. Curr Opin Endocrinol Diabetes Obes 22(5):374–380

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, Burnham CE (2001) Pendrin: an apical Cl/OH/HCO3 exchanger in the kidney cortex. Am J Physiol Renal Physiol 280(2):F356–F364

    Google Scholar 

  • Sugiura M, Sato E, Nakashima T, Sugiura J, Furuhashi A, Yoshino T, Nakayama A, Mori N, Murakami H, Naganawa S (2005) Long-term follow-up in patients with Pendred syndrome: vestibular, auditory and other phenotypes. Eur Arch Otorhinolaryngol 262(9):737–743

    Article  PubMed  Google Scholar 

  • Suzuki H, Oshima A, Tsukamoto K, Abe S, Kumakawa K, Nagai K, Satoh H, Kanda Y, Iwasaki S, Usami S (2007) Clinical characteristics and genotype-phenotype correlation of hearing loss patients with SLC26A4 mutations. Acta Otolaryngol 127(12):1292–1297

    Google Scholar 

  • Syed S (2015) Iodine and the “near” eradication of cretinism. Pediatrics 135(4):594–596

    Article  PubMed  Google Scholar 

  • Taylor JP, Metcalfe RA, Watson PF, Weetman AP, Trembath RC (2002) Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J Clin Endocrinol Metab 87(4):1778–1784

    Google Scholar 

  • Tsukamoto K, Suzuki H, Harada D, Namba A, Abe S, Usami S (2003) Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. Eur J Hum Genet 11(12):916–922

    Google Scholar 

  • Twyffels L, Strickaert A, Virreira M, Massart C, Van Sande J, Wauquier C, Beauwens R, Dumont JE, Galietta LJ, Boom A, Kruys V (2014) Anoctamin-1/TMEM16A is the major apical iodide channel of the thyrocyte. Am J Physiol Cell Physiol 307(12):C1102–C1112

    Article  CAS  PubMed  Google Scholar 

  • Valvassori GE, Clemis JD (1978) The large vestibular aqueduct syndrome. Laryngoscope 88:723–728

    Article  CAS  PubMed  Google Scholar 

  • van den Hove MF, Croizet-Berger K, Jouret F, Guggino SE, Guggino WB, Devuyst O, Courtoy PJ (2006) The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147(3):1287–1296

    Article  PubMed  Google Scholar 

  • Waller DK, Anderson JL, Lorey F, Cunningham GC (2000) Risk factors for congenital hypothyroidism: An investigation of infant’s birth weight, ethnicity, and gender in California, 1990–1998. Teratology 62(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2013) Mouse models for pendrin-associated loss of cochlear and vestibular function. Cell Physiol Biochem 32(7):157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJ, Lee JH, Everett LA, Wall SM, Royaux IE, Green ED, Marcus DC (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S, Marcus DC (2007) Loss of cochlear HCO3 secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292(5):F1345–F1353

    Google Scholar 

  • Wangemann P, Kim HM, Billings S, Nakaya K, Li X, Singh R, Sharlin DS, Forrest D, Marcus DC, Fong P (2009) Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. Am J Physiol Renal Physiol 297(5):F1435–F1447

    Google Scholar 

  • Xing M, Tokumaru Y, Wu G, Westra WB, Ladenson PW, Sidransky D (2003) Hypermethylation of the Pendred syndrome gene SLC26A4 is an early event in thyroid tumorigenesis. Cancer Res 63(9):2312–2315

    Google Scholar 

  • Yang T, Vidarsson H, Rodrigo-Blomqvist S, Rosengren SS, Enerback S, Smith RJ (2007) Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J Hum Genet 80(6):1055–1063

    Google Scholar 

  • Yoshida A, Taniguchi S, Hisatome I, Royaux IE, Green ED, Kohn LD, Suzuki K (2002) Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J Clin Endocrinol Metab 87(7):3356–3361

    Article  CAS  PubMed  Google Scholar 

  • Zalewski CK, Chien WW, King KA, Muskett JA, Baron RE, Butman JA, Griffith AJ, Brewer CC (2015) Vestibular dysfunction in patients with enlarged vestibular aqueduct. Otolaryngol Head Neck Surg 153(2):257–262

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the K.B. Avraham laboratory is supported by the National Institute of Health (NIH)/NIDCD R01DC011835, I-CORE Gene Regulation in Complex Human Disease Center No. 41/11, and United States-Israel Binational Science Foundation (BSF) 2013027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen B. Avraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dror, A.A., Avraham, K.B. (2017). The Slc26a4 loop Mouse Model for Pendred’s Syndrome and Nonsyndromic Deafness. In: Dossena, S., Paulmichl, M. (eds) The Role of Pendrin in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-43287-8_3

Download citation

Publish with us

Policies and ethics