Skip to main content

Modern Principles of CNS Tumor Classification

  • Chapter
  • First Online:
Brain Tumors in Children

Abstract

Childhood brain tumors remain a major clinical challenge, and one that is further complicated by the fact that histologically similar or even indistinguishable tumors can show significant molecular heterogeneity—something that is still under intense investigation. Recent advances in genome and epigenome research have revealed extensive clinically useful features of distinct molecular entities, or subgroups thereof, which will help in the classification of these tumors, as well as in treatment stratification and therapeutic target identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandopadhayay P et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48(3):273–282

    Article  CAS  Google Scholar 

  • Bender S et al (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24(5):660–672

    Article  CAS  Google Scholar 

  • Biegel JA et al (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59(1):74–79

    CAS  Google Scholar 

  • Brastianos PK et al (2014) Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 46(2):161–165

    Article  CAS  Google Scholar 

  • Buczkowicz P et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46(5):451–456

    Article  CAS  Google Scholar 

  • Cho Y-J et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29(11):1424–1430

    Article  Google Scholar 

  • Clifford S et al (2006) Wnt/wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5(22):2666–2670

    Article  CAS  Google Scholar 

  • Deng MY et al (2018) Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1865-4 [Epub ahead of print]

    Article  CAS  Google Scholar 

  • Ellison DW et al (2011a) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121(3):381–396

    Article  CAS  Google Scholar 

  • Ellison DW et al (2011b) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7–7

    Article  Google Scholar 

  • Fontebasso AM et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46(5):462–466

    Article  CAS  Google Scholar 

  • Franz DN et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381(9861):125–132

    Article  CAS  Google Scholar 

  • Gardiman MP et al (2010) Diffuse leptomeningeal glioneuronal tumors: a new entity? Brain Pathol 20(2):361–366

    Article  Google Scholar 

  • Hasselblatt M et al (2014) SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol 128(3):453–456

    Article  Google Scholar 

  • Holsken A et al (2016) Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun 4(1):20

    Article  Google Scholar 

  • Hovestadt V et al (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125(6):913–916

    Article  Google Scholar 

  • Ichimura K et al (2016) Recurrent neomorphic mutations of MTOR in central nervous system and testicular germ cell tumors may be targeted for therapy. Acta Neuropathol:1–13

    Google Scholar 

  • Johann PD et al (2016) Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29(3):379–393

    Article  CAS  Google Scholar 

  • Jones DTW et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677

    Article  CAS  Google Scholar 

  • Jones DT et al (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488(7409):100–105

    Article  CAS  Google Scholar 

  • Jones DT et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8):927–932

    Article  CAS  Google Scholar 

  • Kleinman CL et al (2014) Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet 46(1):39–44

    Article  CAS  Google Scholar 

  • Koelsche C et al (2014) BRAF V600E expression and distribution in desmoplastic infantile astrocytoma/ganglioglioma. Neuropathol Appl Neurobiol 40(3):337–344

    Article  CAS  Google Scholar 

  • Kool M et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3(8):e3088

    Article  Google Scholar 

  • Kool M et al (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25(3):393–405

    Article  CAS  Google Scholar 

  • Korshunov A et al (2010) Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol 120(2):253–260

    Article  Google Scholar 

  • Korshunov A et al (2012) LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol 124(6):875–881

    Article  Google Scholar 

  • Korshunov A et al (2014) Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 128(2):279–289

    Article  Google Scholar 

  • Korshunov A et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129(5):669–678

    Article  CAS  Google Scholar 

  • Korshunov A et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131(1):137–146

    Article  CAS  Google Scholar 

  • Korshunov A et al (2017) H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol. 134(3):507–516. https://doi.org/10.1007/s00401-017-1710-1 [Epub 2017 Apr 11]

    Article  CAS  Google Scholar 

  • Lewis PW et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861

    Article  CAS  Google Scholar 

  • Li M et al (2009) Frequent amplification of a chr19q13.41 microRNA polycistron (C19MC) in aggressive primitive neuro-ectodermal brain tumors. Cancer Cell 16(6):533–546

    Article  CAS  Google Scholar 

  • Louis DN et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  Google Scholar 

  • Louis DN et al (2014) International Society of Neuropathology-Haarlem Consensus Guidelines for nervous system tumor classification and grading. Brain Pathol 24(5):429–435

    Article  Google Scholar 

  • Mack SC et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506(7489):445–450

    Article  CAS  Google Scholar 

  • Milde T et al (2010) HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 16(12):3240–3252

    Article  CAS  Google Scholar 

  • Northcott PA et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414. https://doi.org/10.1200/JCO.2009.27.4324 [Epub 2010 Sep 7]

    Article  Google Scholar 

  • Northcott PA et al (2012a) Subgroup specific structural variation across 1,000 medulloblastoma genomes. Nature 488(7409):49–56

    Article  CAS  Google Scholar 

  • Northcott PA et al (2012b) Medulloblastomics: the end of the beginning. Nat Rev Cancer 12(12):818–834

    Article  CAS  Google Scholar 

  • Northcott PA et al (2014) Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511(7510):428–434

    Article  CAS  Google Scholar 

  • Pajtler KW et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27(5):728–743

    Article  CAS  Google Scholar 

  • Parker M et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma. Nature 506(7489):451–455

    Article  CAS  Google Scholar 

  • Pfister S et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118(5):1739–1749

    Article  CAS  Google Scholar 

  • Pietsch T et al (2014) Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol 128(1):137–149

    Article  CAS  Google Scholar 

  • Pugh TJ et al (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488(7409):106–110

    Article  CAS  Google Scholar 

  • Qaddoumi I et al (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol:1–13

    Google Scholar 

  • Ramkissoon LA et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A 110(20):8188–8193

    Article  CAS  Google Scholar 

  • Rausch T et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148(1–2):59–71

    Article  CAS  Google Scholar 

  • Reinhardt A et al (2018) Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1837-8 [Epub ahead of print]

    Article  CAS  Google Scholar 

  • Remke M et al (2011) FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol 29(29):3852–3861

    Article  CAS  Google Scholar 

  • Rivera B et al (2016) Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathol:1–17

    Google Scholar 

  • Robinson G et al (2012) Novel mutations target distinct subgroups of medulloblastoma. Nature 488(7409):43–48

    Article  CAS  Google Scholar 

  • Robinson GW et al (2015) Vismodegib exerts targeted efficacy against recurrent sonic hedgehog–subgroup Medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 33(24):2646–2654

    Article  CAS  Google Scholar 

  • Rodriguez FJ et al (2012) Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol 124(5):627–641

    Article  Google Scholar 

  • Rorke L (1983) The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumors. J Neuropathol Exp Neurol 42(1):1–15

    Article  CAS  Google Scholar 

  • Scheurlen WG et al (1998) Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol 16(7):2478–2485

    Article  CAS  Google Scholar 

  • Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405

    Article  CAS  Google Scholar 

  • Schneppenheim R et al (2010) Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 86(2):279–284

    Article  CAS  Google Scholar 

  • Schwalbe EC et al (2013) DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol 125(3):359–371

    Article  CAS  Google Scholar 

  • Schwartzentruber J et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231

    Article  CAS  Google Scholar 

  • Sredni ST, Tomita T (2015) Rhabdoid tumor predisposition syndrome. Pediatr Dev Pathol 18(1):49–58

    Article  Google Scholar 

  • Sturm D et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164(5):1060–1072

    Article  CAS  Google Scholar 

  • Tatevossian RG et al (2010) MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol 120(6):731–743

    Article  Google Scholar 

  • Taylor MD et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472

    Article  CAS  Google Scholar 

  • Taylor KR et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46(5):457–461

    Article  CAS  Google Scholar 

  • Thomas C et al (2016) Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups. Neuro-Oncology 18:790

    Article  CAS  Google Scholar 

  • Thompson MC et al (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24(12):1924–1931

    Article  CAS  Google Scholar 

  • Venneti S et al (2013) Evaluation of Histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 23(5):558–564. https://doi.org/10.1111/bpa.12042

    Article  CAS  PubMed  Google Scholar 

  • Versteege I et al (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394(6689):203–206

    Article  CAS  Google Scholar 

  • Wang L et al (2014) Novel somatic and germline mutations in intracranial germ cell tumors. Nature 511(7508):241–245

    Article  CAS  Google Scholar 

  • Wani K et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123(5):727–738

    Article  CAS  Google Scholar 

  • Witt H et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157

    Article  CAS  Google Scholar 

  • Wu G et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450

    Article  CAS  Google Scholar 

  • Zhang J et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612

    Article  CAS  Google Scholar 

  • Zhukova N et al (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 31(23):2927–2935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan M. Pfister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfister, S.M., Capper, D., Jones, D.T.W. (2018). Modern Principles of CNS Tumor Classification. In: Gajjar, A., Reaman, G., Racadio, J., Smith, F. (eds) Brain Tumors in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-43205-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43205-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43203-8

  • Online ISBN: 978-3-319-43205-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics