Skip to main content

Prostate Cancer Imaging: An Ongoing Change of Paradigm

  • Chapter
  • First Online:
Management of Prostate Cancer
  • 1281 Accesses

Abstract

For decades, accurate detection of prostate cancer foci within the gland has been considered impossible. As a result, protocols of systematically distributed prostate biopsies have been used to investigate patients with clinical suspicion of prostate cancer, and radiologic investigations have been limited to the evaluation of the extraglandular extension of the cancer. Since the end of the 2000s, a new paradigm is emerging. With the advent of new functional pulse sequences, magnetic resonance imaging (MRI) has been shown to accurately detect prostate cancer foci within the gland and to provide information on their individual aggressiveness. These new imaging possibilities have coincided with new clinical needs of tumor detection related, for example, to the advent of active surveillance protocols or salvage therapies for local recurrences. The imaging landscape of prostate cancer is thus rapidly changing. If imaging is still used as a staging method, it is increasingly used to detect the cancer foci before biopsy and help evaluate their aggressiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. el-Gabry EA, Halpern EJ, Strup SE, Gomella LG. Imaging prostate cancer: current and future applications. Oncology (Williston Park). 2001;15(3):325–36; discussion 39–42.

    CAS  Google Scholar 

  2. Bates TS, Gillatt DA, Cavanagh PM, Speakman M. A comparison of endorectal magnetic resonance imaging and transrectal ultrasonography in the local staging of prostate cancer with histopathological correlation. Br J Urol. 1997;79(6):927–32.

    Article  CAS  PubMed  Google Scholar 

  3. May F, Treumann T, Dettmar P, Hartung R, Breul J. Limited value of endorectal magnetic resonance imaging and transrectal ultrasonography in the staging of clinically localized prostate cancer. BJU Int. 2001;87(1):66–9.

    Article  CAS  PubMed  Google Scholar 

  4. McSherry SA, Levy F, Schiebler ML, Keefe B, Dent GA, Mohler JL. Preoperative prediction of pathological tumor volume and stage in clinically localized prostate cancer: comparison of digital rectal examination, transrectal ultrasonography and magnetic resonance imaging. J Urol. 1991;146(1):85–9.

    CAS  PubMed  Google Scholar 

  5. Mitterberger M, Pinggera GM, Pallwein L, et al. The value of three-dimensional transrectal ultrasonography in staging prostate cancer. BJU Int. 2007;100(1):47–50.

    Article  PubMed  Google Scholar 

  6. Sauvain JL, Palascak P, Bourscheid D, et al. Value of power doppler and 3D vascular sonography as a method for diagnosis and staging of prostate cancer. Eur Urol. 2003;44(1):21–30; discussion −1.

    Article  CAS  PubMed  Google Scholar 

  7. de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol. 2015;70(2):233–45.

    Article  PubMed  Google Scholar 

  8. Silva RC, Sasse AD, Matheus WE, Ferreira U. Magnetic resonance image in the diagnosis and evaluation of extra-prostatic extension and involvement of seminal vesicles of prostate cancer: a systematic review of literature and meta-analysis. Int Braz J Urol. 2013;39(2):155–66.

    PubMed  Google Scholar 

  9. Jager GJ, Ruijter ET, van de Kaa CA, et al. Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR Am J Roentgenol. 1996;166(4):845–52.

    Article  CAS  PubMed  Google Scholar 

  10. Epstein JI, Carmichael MJ, Pizov G, Walsh PC. Influence of capsular penetration on progression following radical prostatectomy: a study of 196 cases with long-term followup. J Urol. 1993;150(1):135–41.

    CAS  PubMed  Google Scholar 

  11. Cornud F, Flam T, Chauveinc L, et al. Extraprostatic spread of clinically localized prostate cancer: factors predictive of pT3 tumor and of positive endorectal MR imaging examination results. Radiology. 2002;224(1):203–10.

    Article  PubMed  Google Scholar 

  12. Hricak H, White S, Vigneron D, et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal--pelvic phased-array coils. Radiology. 1994;193(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  13. Futterer JJ, Engelbrecht MR, Jager GJ, et al. Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol. 2007;17(4):1055–65.

    Article  PubMed  Google Scholar 

  14. Futterer JJ, Engelbrecht MR, Huisman HJ, et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology. 2005;237(2):541–9.

    Article  PubMed  Google Scholar 

  15. Bloch BN, Furman-Haran E, Helbich TH, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging--initial results. Radiology. 2007;245(1):176–85.

    Article  PubMed  Google Scholar 

  16. Futterer JJ, Scheenen TW, Huisman HJ, et al. Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol. 2004;39(11):671–80.

    Article  PubMed  Google Scholar 

  17. Futterer JJ, Heijmink SW, Scheenen TW, et al. Prostate cancer: local staging at 3-T endorectal MR imaging--early experience. Radiology. 2006;238(1):184–91.

    Article  PubMed  Google Scholar 

  18. Heijmink SW, Futterer JJ, Hambrock T, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance. Radiology. 2007;244(1):184–95.

    Article  PubMed  Google Scholar 

  19. Wang L, Mullerad M, Chen HN, et al. Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology. 2004;232(1):133–9.

    Article  PubMed  Google Scholar 

  20. Poulakis V, Witzsch U, De Vries R, et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate specific antigen and gleason score to predict prostate cancer stage. J Urol. 2004;172(4 Pt 1):1306–10.

    Article  PubMed  Google Scholar 

  21. Mottet N, Bellmunt J, Briers E, et al. Guidelines on prostate cancer. London: Springer Healthcare; 2016.

    Google Scholar 

  22. Barentsz JO, Thoeny HC. Prostate cancer: can imaging accurately diagnose lymph node involvement? Nat Rev Urol. 2015;12(6):313–5.

    Article  PubMed  Google Scholar 

  23. Kiss B, Thoeny HC, Studer UE. Current Status of Lymph Node Imaging in Bladder and Prostate Cancer. Urology 2016 (in press). doi: 10.1016/j.urology.2016.02.014.

    Google Scholar 

  24. Thoeny HC, Froehlich JM, Triantafyllou M, et al. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology. 2014;273(1):125–35.

    Article  PubMed  Google Scholar 

  25. Budiharto T, Joniau S, Lerut E, et al. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol. 2011;60(1):125–30.

    Article  PubMed  Google Scholar 

  26. Heck MM, Souvatzoglou M, Retz M, et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2014;41(4):694–701.

    Article  PubMed  Google Scholar 

  27. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491–9.

    Article  PubMed  Google Scholar 

  28. Heesakkers RA, Hovels AM, Jager GJ, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 2008;9(9):850–6.

    Article  CAS  PubMed  Google Scholar 

  29. Birkhauser FD, Studer UE, Froehlich JM, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol. 2013;64(6):953–60.

    Article  PubMed  Google Scholar 

  30. Sartor O, Eisenberger M, Kattan MW, Tombal B, Lecouvet F. Unmet needs in the prediction and detection of metastases in prostate cancer. Oncologist. 2013;18(5):549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gutzeit A, Doert A, Froehlich JM, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol. 2010;39(4):333–43.

    Article  PubMed  Google Scholar 

  32. Lecouvet FE, El Mouedden J, Collette L, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.

    Article  PubMed  Google Scholar 

  33. Lecouvet FE, Geukens D, Stainier A, et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25(22):3281–7.

    Article  PubMed  Google Scholar 

  34. Luboldt W, Kufer R, Blumstein N, et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology. 2008;249(3):1017–25.

    Article  PubMed  Google Scholar 

  35. Pasoglou V, Larbi A, Collette L, et al. One-step TNM staging of high-risk prostate cancer using magnetic resonance imaging (MRI): Toward an upfront simplified “all-in-one” imaging approach? Prostate. 2013;74(5):469–77.

    Article  PubMed  CAS  Google Scholar 

  36. Rouviere O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol. 2010;20(5):1254–66.

    Article  PubMed  Google Scholar 

  37. Lecouvet FE, Talbot JN, Messiou C, et al. Monitoring the response of bone metastases to treatment with magnetic resonance imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014;50(15):2519–31.

    Article  CAS  PubMed  Google Scholar 

  38. Kelloff GJ, Choyke P, Coffey DS. Challenges in clinical prostate cancer: role of imaging. AJR Am J Roentgenol. 2009;192(6):1455–70.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singh H, Canto EI, Shariat SF, et al. Predictors of prostate cancer after initial negative systematic 12 core biopsy. J Urol. 2004;171(5):1850–4.

    Article  PubMed  Google Scholar 

  40. Mian BM, Naya Y, Okihara K, Vakar-Lopez F, Troncoso P, Babaian RJ. Predictors of cancer in repeat extended multisite prostate biopsy in men with previous negative extended multisite biopsy. Urology. 2002;60(5):836–40.

    Article  PubMed  Google Scholar 

  41. Delongchamps NB, Haas GP. Saturation biopsies for prostate cancer: current uses and future prospects. Nat Rev Urol. 2009;6(12):645–52.

    Article  PubMed  Google Scholar 

  42. Giannarini G, Autorino R, di Lorenzo G. Saturation biopsy of the prostate: why saturation does not saturate. Eur Urol. 2009;56(4):619–21.

    Article  PubMed  Google Scholar 

  43. Ashley RA, Inman BA, Routh JC, Mynderse LA, Gettman MT, Blute ML. Reassessing the diagnostic yield of saturation biopsy of the prostate. Eur Urol. 2008;53(5):976–81.

    Article  PubMed  Google Scholar 

  44. Quinn SF, Franzini DA, Demlow TA, et al. MR imaging of prostate cancer with an endorectal surface coil technique: correlation with whole-mount specimens. Radiology. 1994;190(2):323–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ikonen S, Karkkainen P, Kivisaari L, et al. Endorectal magnetic resonance imaging of prostatic cancer: comparison between fat-suppressed T2-weighted fast spin echo and three-dimensional dual-echo, steady-state sequences. Eur Radiol. 2001;11(2):236–41.

    Article  CAS  PubMed  Google Scholar 

  46. Girouin N, Mege-Lechevallier F, Tonina Senes A, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol. 2007;17(6):1498–509.

    Article  PubMed  Google Scholar 

  47. Cheikh AB, Girouin N, Colombel M, et al. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur Radiol. 2009;19(3):770–8.

    Article  PubMed  Google Scholar 

  48. Tan CH, Wang J, Kundra V. Diffusion weighted imaging in prostate cancer. Eur Radiol. 2011;21(3):593–603.

    Article  PubMed  Google Scholar 

  49. Cirillo S, Petracchini M, Della Monica P, et al. Value of endorectal MRI and MRS in patients with elevated prostate-specific antigen levels and previous negative biopsies to localize peripheral zone tumours. Clin Radiol. 2008;63(8):871–9.

    Article  CAS  PubMed  Google Scholar 

  50. Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging. 2007;25(1):146–52.

    Article  PubMed  Google Scholar 

  51. Yoshizako T, Wada A, Hayashi T, et al. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol. 2008;49(10):1207–13.

    Article  CAS  PubMed  Google Scholar 

  52. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22(4):746–57.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bratan F, Niaf E, Melodelima C, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol. 2013;23(7):2019–29.

    Article  PubMed  Google Scholar 

  54. Turkbey B, Mani H, Shah V, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol. 2011;186(5):1818–24.

    Article  PubMed  Google Scholar 

  55. Turkbey B, Pinto PA, Mani H, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection--histopathologic correlation. Radiology. 2010;255(1):89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS. Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol. 2012;187(6):2032–8.

    Article  PubMed  Google Scholar 

  57. Schoots IG, Petrides N, Giganti F, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol. 2015;67(4):627–36.

    Article  PubMed  Google Scholar 

  58. van Hove A, Savoie PH, Maurin C, et al. Comparison of image-guided targeted biopsies versus systematic randomized biopsies in the detection of prostate cancer: a systematic literature review of well-designed studies. World J Urol. 2014;32(4):847–58.

    Article  PubMed  Google Scholar 

  59. Valerio M, Donaldson I, Emberton M, et al. Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol. 2015;68(1):8–19.

    Article  PubMed  Google Scholar 

  60. Panebianco V, Barchetti F, Sciarra A. Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. Urol Oncol. 2015;33(1):17 e1–7.

    Article  PubMed  Google Scholar 

  61. Baco E, Rud E, Eri LM, et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur Urol. 2016;69(1):149–56.

    Article  PubMed  Google Scholar 

  62. Park BK, Park JW, Park SY, et al. Prospective evaluation of 3-T MRI performed before initial transrectal ultrasound-guided prostate biopsy in patients with high prostate-specific antigen and no previous biopsy. AJR Am J Roentgenol. 2011;197(5):W876–81.

    Article  PubMed  Google Scholar 

  63. Futterer JJ, Briganti A, De Visschere P, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol. 2015;68(6):1045–53.

    Article  PubMed  Google Scholar 

  64. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313(4):390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Habchi H, Bratan F, Paye A, et al. Value of prostate multiparametric magnetic resonance imaging for predicting biopsy results in first or repeat biopsy. Clin Radiol. 2014;69(3):e120–8.

    Article  CAS  PubMed  Google Scholar 

  66. Turkbey B, Mani H, Aras O, et al. Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology. 2013;268(1):144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rouviere O, Papillard M, Girouin N, et al. Is it possible to model the risk of malignancy of focal abnormalities found at prostate multiparametric MRI? Eur Radiol. 2012;22(5):1149–57.

    Article  PubMed  Google Scholar 

  68. Dickinson L, Ahmed HU, Allen C, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011;59(4):477–94.

    Article  PubMed  Google Scholar 

  69. Vache T, Bratan F, Mege-Lechevallier F, Roche S, Rabilloud M, Rouviere O. Characterization of prostate lesions as benign or malignant at multiparametric MR imaging: comparison of three scoring systems in patients treated with radical prostatectomy. Radiology. 2014;272(2):446–55.

    Article  PubMed  Google Scholar 

  70. Costa DN, Lotan Y, Rofsky NM, et al. Assessment of prospectively assigned likert scores for targeted magnetic resonance imaging-transrectal ultrasound fusion biopsies in patients with suspected prostate cancer. J Urol. 2016;195(1):80–7.

    Article  PubMed  Google Scholar 

  71. Renard-Penna R, Mozer P, Cornud F, et al. Prostate imaging reporting and data system and likert scoring system: multiparametric MR imaging validation study to screen patients for initial biopsy. Radiology. 2015;275(2):458–68.

    Article  PubMed  Google Scholar 

  72. Rosenkrantz AB, Lim RP, Haghighi M, Somberg MB, Babb JS, Taneja SS. Comparison of interreader reproducibility of the prostate imaging reporting and data system and likert scales for evaluation of multiparametric prostate MRI. AJR Am J Roentgenol. 2013;201(4):W612–8.

    Article  PubMed  Google Scholar 

  73. Puech P, Rouviere O, Renard-Penna R, et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy--prospective multicenter study. Radiology. 2013;268(2):461–9.

    Article  PubMed  Google Scholar 

  74. Rastinehad AR, Turkbey B, Salami SS, et al. Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J Urol. 2013;191(6):1749–54.

    Article  PubMed  Google Scholar 

  75. Rosenkrantz AB, Kim S, Lim RP, et al. Prostate cancer localization using multiparametric MR imaging: comparison of prostate imaging reporting and data system (PI-RADS) and likert scales. Radiology. 2013;269(2):482–92.

    Article  PubMed  Google Scholar 

  76. Barentsz JO, Weinreb JC, Verma S, et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol. 2016;69(1):41–9.

    Article  PubMed  Google Scholar 

  77. Vargas HA, Hotker AM, Goldman DA, et al. Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur Radiol. 2015;26(6):1606–12.

    Article  PubMed  Google Scholar 

  78. Muller BG, Shih JH, Sankineni S, et al. Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging. Radiology. 2015;277(3):741–50.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Niaf E, Lartizien C, Bratan F, et al. Prostate focal peripheral zone lesions: characterization at multiparametric MR imaging--influence of a computer-aided diagnosis system. Radiology. 2014;271(3):761–9.

    Article  PubMed  Google Scholar 

  80. Hambrock T, Vos PC, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ. Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging--effect on observer performance. Radiology. 2013;266(2):521–30.

    Article  PubMed  Google Scholar 

  81. Peng Y, Jiang Y, Antic T, Giger ML, Eggener SE, Oto A. Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study. Radiology. 2014;271(2):461–71.

    Article  PubMed  Google Scholar 

  82. Hoang Dinh A, Melodelima C, Souchon R, et al. Quantitative analysis of prostate multiparametric MR images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study. Radiology. 2016;151406.

    Google Scholar 

  83. Baco E, Gelet A, Crouzet S, et al. Hemi salvage high-intensity focused ultrasound (HIFU) in unilateral radiorecurrent prostate cancer: a prospective two-centre study. BJU Int. 2014;114(4):532–40.

    Article  PubMed  Google Scholar 

  84. Donati OF, Jung SI, Vargas HA, et al. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology. 2013;268(2):440–50.

    Article  PubMed  Google Scholar 

  85. Abd-Alazeez M, Ramachandran N, Dikaios N, et al. Multiparametric MRI for detection of radiorecurrent prostate cancer: added value of apparent diffusion coefficient maps and dynamic contrast-enhanced images. Prostate Cancer Prostatic Dis. 2015;18(2):128–36.

    Article  CAS  PubMed  Google Scholar 

  86. Alonzo F, Melodelima C, Bratan F, et al. Detection of locally radio-recurrent prostate cancer at multiparametric MRI: can dynamic contrast-enhanced imaging be omitted? Diagn Interv Imaging. 2016;97(4):433–41.

    Article  CAS  PubMed  Google Scholar 

  87. Liauw SL, Pitroda SP, Eggener SE, et al. Evaluation of the prostate bed for local recurrence after radical prostatectomy using endorectal magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2013;85(2):378–84.

    Article  PubMed  Google Scholar 

  88. Linder BJ, Kawashima A, Woodrum DA, et al. Early localization of recurrent prostate cancer after prostatectomy by endorectal coil magnetic resonance imaging. Can J Urol. 2014;21(3):7283–9.

    PubMed  Google Scholar 

  89. Postema A, Mischi M, de la Rosette J, Wijkstra H. Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urol. 2015;33(11):1651–9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Halpern EJ, Strup SE. Using gray-scale and color and power Doppler sonography to detect prostatic cancer. AJR Am J Roentgenol. 2000;174(3):623–7.

    Article  CAS  PubMed  Google Scholar 

  91. Taverna G, Morandi G, Seveso M, et al. Colour Doppler and microbubble contrast agent ultrasonography do not improve cancer detection rate in transrectal systematic prostate biopsy sampling. BJU Int. 2011;108(11):1723–7.

    Article  PubMed  Google Scholar 

  92. Braeckman J, Autier P, Soviany C, et al. The accuracy of transrectal ultrasonography supplemented with computer-aided ultrasonography for detecting small prostate cancers. BJU Int. 2008;102(11):1560–5.

    Article  PubMed  Google Scholar 

  93. Schiffmann J, Manka L, Boehm K, et al. Controversial evidence for the use of HistoScanning in the detection of prostate cancer. World J Urol. 2015;33(12):1993–9.

    Article  PubMed  Google Scholar 

  94. Correas JM, Bridal L, Lesavre A, Mejean A, Claudon M, Helenon O. Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol. 2001;11(8):1316–28.

    Article  CAS  PubMed  Google Scholar 

  95. Seitz M, Gratzke C, Schlenker B, et al. Contrast-enhanced transrectal ultrasound (CE-TRUS) with cadence-contrast pulse sequence (CPS) technology for the identification of prostate cancer. Urol Oncol. 2011;29(3):295–301.

    Article  PubMed  Google Scholar 

  96. Halpern EJ, McCue PA, Aksnes AK, Hagen EK, Frauscher F, Gomella LG. Contrast-enhanced US of the prostate with Sonazoid: comparison with whole-mount prostatectomy specimens in 12 patients. Radiology. 2002;222(2):361–6.

    Article  PubMed  Google Scholar 

  97. Matsumoto K, Nakagawa K, Hashiguchi A, et al. Contrast-enhanced ultrasonography of the prostate with Sonazoid. Jpn J Clin Oncol. 2010;40(11):1099–104.

    Article  PubMed  Google Scholar 

  98. Li Y, Tang J, Fei X, Gao Y. Diagnostic performance of contrast enhanced ultrasound in patients with prostate cancer: a meta-analysis. Acad Radiol. 2013;20(2):156–64.

    Article  PubMed  Google Scholar 

  99. Postema AW, Frinking PJ, Smeenge M, et al. Dynamic contrast-enhanced ultrasound parametric imaging for the detection of prostate cancer. BJU Int. 2016;117(4):598–603.

    Article  PubMed  Google Scholar 

  100. Zhang B, Ma X, Zhan W, et al. Real-time elastography in the diagnosis of patients suspected of having prostate cancer: a meta-analysis. Ultrasound Med Biol. 2014;40(7):1400–7.

    Article  PubMed  Google Scholar 

  101. Teng J, Chen M, Gao Y, Yao Y, Chen L, Xu D. Transrectal sonoelastography in the detection of prostate cancers: a meta-analysis. BJU Int. 2012;110(11 Pt B):E614–20.

    Article  PubMed  Google Scholar 

  102. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 2012;28(1):13–20.

    Article  PubMed  Google Scholar 

  103. Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc. 2013;27(9):3280–7.

    Article  PubMed  Google Scholar 

  104. Woo S, Kim SY, Cho JY, Kim SH. Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol. 2014;15(3):346–55.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Correas JM, Tissier AM, Khairoune A, et al. Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. 2015;275(1):280–9.

    Article  PubMed  Google Scholar 

  106. Woo S, Kim SY, Lee MS, Cho JY, Kim SH. Shear wave elastography assessment in the prostate: an intraobserver reproducibility study. Clin Imaging. 2015;39(3):484–7.

    Article  PubMed  Google Scholar 

  107. Aigner F, Schafer G, Steiner E, et al. Value of enhanced transrectal ultrasound targeted biopsy for prostate cancer diagnosis: a retrospective data analysis. World J Urol. 2012;30(3):341–6.

    Article  CAS  PubMed  Google Scholar 

  108. Nelson ED, Slotoroff CB, Gomella LG, Halpern EJ. Targeted biopsy of the prostate: the impact of color Doppler imaging and elastography on prostate cancer detection and Gleason score. Urology. 2007;70(6):1136–40.

    Article  PubMed  Google Scholar 

  109. Xie SW, Li HL, Du J, et al. Contrast-enhanced ultrasonography with contrast-tuned imaging technology for the detection of prostate cancer: comparison with conventional ultrasonography. BJU Int. 2012;109(11):1620–6.

    Article  PubMed  Google Scholar 

  110. Brock M, Eggert T, Palisaar RJ, et al. Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer. J Urol. 2013;189(1):93–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Rouvière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rouvière, O., Champagnac, J. (2017). Prostate Cancer Imaging: An Ongoing Change of Paradigm. In: Bolla, M., van Poppel, H. (eds) Management of Prostate Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-42769-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42769-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42768-3

  • Online ISBN: 978-3-319-42769-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics