Skip to main content

Cognitive and Perceptual Impairments in Parkinson’s Disease Arising from Dysfunction of the Cortex and Basal Ganglia

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 1898 Accesses

Abstract

Cognitive and perceptual impairments in Parkinson’s disease (PD) contribute substantially to reduced quality of life and implicate the dysfunction of multiple systems including widespread cortical regions and the basal ganglia. Common impairments in attention, executive function, and visuospatial function reflect a disruption of neuronal circuits between the striatum and prefrontal and parietal cortices. In this chapter, we focus mainly on visuospatial cognition and perception, areas of recent growth in research. We include discussion of disparities in visuospatial and perceptual performance by PD subgroups, defined by characteristics of motor symptom onset: body side of initial symptom (left, right) and type of initial symptom (tremor, non-tremor). We describe how some of the visuocognitive impairments seen in PD may be related to changes in basic visual abilities and in visual perception, and how basal ganglia-mediated motor dysfunction, and cortical dysfunction affecting visual perception, may be associated with changes in action observation (perception–action coupling). Cognitive and perceptual impairments directly affect quality of life in PD and contribute to disability by exacerbating the tendency toward gait dysfunction and falls, especially under dual-task (cognitive–motor) conditions. Interventions are being developed that target the cognitive symptoms of PD, including cognitive and attentional training and the use of noninvasive brain stimulation techniques. Understanding the etiology and course of cognitive and perceptual symptoms will inform the further rational development of interventions to ease the burden experienced by those with PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alegre M, Rodriguez-Oroz MC, Valencia M et al (2010) Changes in subthalamic activity during movement observation in Parkinson’s disease: is the mirror system mirrored in the basal ganglia? Clin Neurophysiol 121:414–425

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  PubMed  Google Scholar 

  • Alonso-Recio L, Serrano JM, Martin P (2014) Selective attention and facial expression recognition in patients with Parkinson’s disease. Arch Clin Neuropsychol 29(4):374–384

    Article  PubMed  Google Scholar 

  • Alves G, Larsen JP, Emre M et al (2006) Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov Disord 21(8):1123–1130

    Article  PubMed  Google Scholar 

  • Amick MM, Cronin-Golomb A, Gilmore GC (2003) Visual processing of rapidly presented stimuli is normalized in Parkinson’s disease when proximal stimulus strength is enhanced. Vision Res 43:2827–2835

    Article  PubMed  Google Scholar 

  • Amick MM, Grace J, Chou KL (2006a) Body side of motor symptom onset in Parkinson’s disease is associated with memory performance. J Int Neuropsychol Soc 12(5):736–740. doi:10.1017/S1355617706060875

    Article  PubMed  Google Scholar 

  • Amick MM, Schendan HE, Ganis G et al (2006b) Frontostriatal circuits are necessary for visuomotor transformation: mental rotation in Parkinson’s disease. Neuropsychologia 44:339–349

    Article  PubMed  Google Scholar 

  • Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18(3):251–270. doi:10.1177/1073858411403316

    Article  PubMed  Google Scholar 

  • Antonini A, Vontobel P, Psylla M, Gunther I, Maguire PR, Missimer J, Leenders KL (1995) Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 52(12):1183–1190

    Google Scholar 

  • Appleman ER, Stavitsky K, Cronin-Golomb A (2011) Relation of subjective quality of life to motor symptom profile in Parkinson’s disease. Parkinsons Dis 2011:472830. doi:10.4061/2011/472830

    PubMed  PubMed Central  Google Scholar 

  • Archibald NK, Clarke MP, Mosimann UP et al (2009) The retina in Parkinson’s disease. Brain 132:1128–1145

    Article  PubMed  Google Scholar 

  • Archibald NK, Clarke MP, Mosimann UP et al (2011) Visual symptoms in Parkinson’s disease and Parkinson’s disease dementia. Mov Disord 26(3):2387–2395

    Article  PubMed  Google Scholar 

  • Arieli A, Sterkin A, Grinvald A et al (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283):1868–1871

    Article  PubMed  Google Scholar 

  • Armstrong RA (2008) Visual signs and symptoms of Parkinson’s disease. Clin Exp Optom 91(2):129–138

    Article  PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177. doi:10.1016/j.tics.2004.02.010

    Article  PubMed  Google Scholar 

  • Backman L, Nyberg L, Soveri A et al (2011) Effects of working-memory training on striatal dopamine release. Science 333(6043):718. doi:10.1126/science.1204978

    Article  PubMed  Google Scholar 

  • Baddeley A, Della Sala S (1996) Working memory and executive control. Philos Trans R Soc Lond B Biol Sci 351(1346):1397–1403; discussion 1394–1403

    Article  PubMed  Google Scholar 

  • Balasubramanian R, Gan L (2014) Development of retinal amacrine cells and their dendritic stratification. Curr Opthalmol Rep 2:100–106

    Article  Google Scholar 

  • Barnes KA, Cohen AL, Power JD et al (2010) Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI. Front Syst Neurosci 4:18. doi:10.3389/fnsys.2010.00018

    PubMed  PubMed Central  Google Scholar 

  • Barone P, Aarsland D, Burn D et al (2011) Cognitive impairment in nondemented Parkinson’s disease. Mov Disord 26(14):2483–2495. doi:10.1002/mds.23919

    Article  PubMed  Google Scholar 

  • Bodis-Wollner I (2003) Neuropsychological and perceptual deficits in Parkinson’s disease. Parkinsonism Relat Disord 9:S83–S89

    Article  PubMed  Google Scholar 

  • Bodis-Wollner I, Glazman S, Yerram S (2013) Fovea and foveation in Parkinson’s disease. Behav Neurosci 127(2):139–150. doi:10.1037/a0031225

    Google Scholar 

  • Bodis-Wollner I, Marx MS, Mitra S et al (1987) Visual dysfunction in Parkinson’s disease: loss in spatiotemporal contrast sensitivity. Brain 110:1675–1698

    Article  PubMed  Google Scholar 

  • Boggio PS, Ferrucci R, Rigonatti SP et al (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249(1):31–38

    Article  PubMed  Google Scholar 

  • Bohnen NI, Minoshima S, Giordani B et al (1999) Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 52(3):541–546

    Article  PubMed  Google Scholar 

  • Bond M, Rogers G, Peters J et al (2012) The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol Assess 16(21):1–470. doi:10.3310/hta16210

    Article  PubMed  PubMed Central  Google Scholar 

  • Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AG, Wolters EC, Van Royen EA (1997) [123I] FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol, Neurosurg Psychiatry 62(2):133–140

    Google Scholar 

  • Braak H, Ghebremedhin E, Rub U et al (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  • Braak H, Bohl JR, Muller CM et al (2006) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 21(12):2042–2051

    Article  PubMed  Google Scholar 

  • Bruck A, Kurki T, Kaasinen V et al (2004) Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. J Neurol Neurosurg Psychiatry 75(10):1467–1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulens C, Meerwaldt JD, Van der Wildt GJ et al (2004) Effect of levodopa treatment on contrast sensitivity in Parkinson’s disease. Ann Neurol 22(3):365–369

    Article  Google Scholar 

  • Calleo J, Burrows C, Levin H et al (2012) Cognitive rehabilitation for executive dysfunction in Parkinson’s disease: application and current directions. Parkinsons Dis 2012:512892. doi:10.1155/2012/512892

    PubMed  Google Scholar 

  • Carbon M, Marie RM (2003) Functional imaging of cognition in Parkinson’s disease. Curr Opin Neurol 16(4):475–480

    PubMed  Google Scholar 

  • Carbon M, Reetz K, Ghilardi MF et al (2010) Early Parkinson’s disease: longitudinal changes in brain activity during sequence learning. Neurobiol Dis 37(2):455–460

    Article  PubMed  Google Scholar 

  • Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973

    Article  PubMed  Google Scholar 

  • Castello-Branco M, Mendes M, Silva F et al (2009) Motion integration deficits are independent of magnocellular impairment in Parkinson’s disease. Neuropsychologia 47:314–320

    Article  Google Scholar 

  • Castiello U, Ansuini C, Bulgheroni M et al (2009) Visuomotor priming effects in Parkinson’s disease patients depend on the match between the observed and the executed action. Neuropsychologia 47:835–842

    Article  PubMed  Google Scholar 

  • Chan F, Armstrong IT, Pari G et al (2005) Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia 43(5):784–796

    Article  PubMed  Google Scholar 

  • Chaudhuri KR, Schapira AHV (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–474

    Article  PubMed  Google Scholar 

  • Chaudhuri KR, Odin P, Antonini A et al (2011) Parkinson’s disease: the non-motor issues. Parkinsonism Relat Disord 17(10):717–723

    Article  PubMed  Google Scholar 

  • Chikama M, McFarland NR, Amaral DG et al (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17(24):9686–9705

    PubMed  Google Scholar 

  • Chokron S, Bartolomeo P (1997) Patterns of dissociation between left hemineglect and deviation of the egocentric reference. Neuropsychologia 35(11):1503–1508

    Article  PubMed  Google Scholar 

  • Chou KL, Cronin-Golomb A (2013) Feeling the need … the need for speed (of processing training) in Parkinson disease. Neurology 81(15):1278–1279

    Article  PubMed  Google Scholar 

  • Christopher L, Marras C, Duff-Canning S et al (2014) Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 137(Pt 2):565–575

    Article  PubMed  Google Scholar 

  • Clark U, Neargarder S, Cronin-Golomb A (2008) Specific impairments in the recognition of emotional facial expressions in Parkinson’s disease. Neuropsychologia 46:2300–2309

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark US, Neargarder S, Cronin-Golomb A (2010) Visual exploration of emotional facial expressions in Parkinson’s disease. Neuropsychologia 48(7):1901–1913

    Google Scholar 

  • Cochrane CJ, Ebmeier KP (2013) Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80(9):857–864. doi:10.1212/WNL.0b013e318284070c

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper JA, Sagar HJ, Jordan N et al (1991) Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114(Pt 5):2095–2122

    Article  PubMed  Google Scholar 

  • Cronin-Golomb A (2010) Parkinson’s disease as a disconnection syndrome. Neuropsychol Rev 20:191–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronin-Golomb A (2013) Emergence of nonmotor symptoms as the focus of research and treatment of Parkinson’s disease: introduction to the special section on nonmotor dysfunctions in Parkinson’s disease. Behav Neurosci 127(2):135–138. doi:10.1037/a0032142

    Google Scholar 

  • Davidsdottir S, Cronin-Golomb A, Lee A (2005) Visual and spatial symptoms in Parkinson’s disease. Vision Res 45(10):1285–1296

    Article  PubMed  Google Scholar 

  • Davidsdottir S, Wagenaar R, Young D et al (2008) Impact of optic flow perception and egocentric coordinates on veering in Parkinson’s disease. Brain 131(11):2882–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • DeGutis J, Grosso M, VanVleet T, Esterman M, Pistorino L, Cronin-Golomb A (2016) Sustained attention training reduces spatial bias in Parkinson’s disease: a pilot case series. Neurocase 22:179–186

    Article  PubMed  Google Scholar 

  • Diaz-Santos M, Cao B, Mauro SA, Yazdanbakhsh A, Neargarder S, Cronin-Golomb A (2015a) Effect of visual cues on the resolution of perceptual ambiguity in Parkinson’s disease and normal aging. J Int Neuropsychol Soc 21(2):146–155. doi:10.1017/S1355617715000065

    Google Scholar 

  • Diaz-Santos M, Cao B, Yazdanbakhsh A, Norton DJ, Neargarder S, Cronin-Golomb A (2015b) Perceptual, cognitive, and personality rigidity in Parkinson’s disease. Neuropsychologia 69:183–193. doi:10.1016/j.neuropsychologia.2015.01.044

    Google Scholar 

  • Diederich NJ, Stebbins G, Schiltz C et al (2014) Are patients with Parkinson’s disease blind to blindsight? Brain 137:1838–1849

    Article  PubMed  PubMed Central  Google Scholar 

  • DiMartino A, Scheres A, Margulies DS et al (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18(12):2735–2747

    Article  Google Scholar 

  • Dirnberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7:192–224

    Article  Google Scholar 

  • Djaldetti N, Ziv I, Melamed E (2006) The mystery of motor asymmetry in Parkinson’s disease. Lancet Neurol 5:796–802

    Article  PubMed  Google Scholar 

  • Doruk D, Gray Z, Bravo GL et al (2014) Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett 582:27–31

    Article  PubMed  Google Scholar 

  • Dosenbach NU, Visscher KM, Palmer ED et al (2006) A core system for the implementation of task sets. Neuron 50(5):799–812

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffy CJ (2009) Visual motion processing in aging and Alzheimer’s disease: neuronal mechanisms and behavior from monkeys to man. Ann N Y Acad Sci 1170:736–744

    Article  PubMed  Google Scholar 

  • Dujardin K, Degreef JF, Rogelet P et al (1999) Impairment of the supervisory attentional system in early untreated patients with Parkinson’s disease. J Neurol 246(9):783–788

    Article  PubMed  Google Scholar 

  • Dukelow SP, DeSouza JF, Culham JC et al (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000

    PubMed  Google Scholar 

  • Durant S, Zanker JM (2012) Variation in the local motion statistics of real-life optic flow scenes. Neural Comput 24(7):1781–1805

    Article  PubMed  Google Scholar 

  • Ebersbach G, Trottenberg T, Hattig H et al (1996) Directional bias of initial visual exploration: a symptom of neglect in Parkinson’s disease. Brain 119(1):79–87

    Article  PubMed  Google Scholar 

  • Edwards JD, Hauser RA, O’Connor ML et al (2013) Randomized trial of cognitive speed of processing training in Parkinson disease. Neurology 81(15):1284–1290. doi:10.1212/WNL.0b013e3182a823ba

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggers C, Kahraman D, Fink GR et al (2011) Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT single photon emission computed tomography. Mov Disord 26(3):416–423

    Article  PubMed  Google Scholar 

  • Eidelberg D (2009) Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 32(10):548–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Esterman M, Noonan SK, Rosenberg M et al (2013) In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cereb Cortex 23(11):2712–2723. doi:10.1093/cercor/bhs261

    Article  PubMed  Google Scholar 

  • Ezzati A, Khadjevand F, Zandvakili A et al (2010) Higher-level motion detection deficit in Parkinson’s disease. Brain Res 1320:143–151

    Article  PubMed  Google Scholar 

  • Fischer E, Bulthoff HH, Logothetis NK et al (2012) Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. Cereb Cortex 22(4):865–876

    Article  PubMed  Google Scholar 

  • Foltynie T, Brayne CE, Robbins TW et al (2004) The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127(Pt 3):550–560

    PubMed  Google Scholar 

  • Foster ER, Black KJ, Antenor-Dorsey JV et al (2008) Motor asymmetry and substantia nigra volume are related to spatial delayed response performance in Parkinson disease. Brain Cogn 67(1):1–10

    Article  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL et al (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56(1):171–184

    Article  PubMed  Google Scholar 

  • Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Rev Neurol 3:383–393

    Article  Google Scholar 

  • Fudge JL, Breitbart MA, Danish M et al (2005) Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol 490(2):101–118. doi:10.1002/cne.20660

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller RL, Van Winkle EP, Anderson KE et al (2013) Dual task performance in Parkinson’s disease: a sensitive predictor of impairment and disability. Parkinsonism Relat Disord 19(3):325–328. doi:10.1016/j.parkreldis.2012.11.011

    Article  PubMed  Google Scholar 

  • Gaenslen A, Swid I, Liepelt-Scarfone I et al (2011) The patients’ perception of prodromal symptoms before the initial diagnosis of Parkinson’s disease. Mov Disord 26(4):653–658

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaig C, Tolosa E (2009) When does Parkinson’s disease begin? Mov Disord 24(Suppl 2):S656–S664

    Article  PubMed  Google Scholar 

  • Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119(7):1459–1474

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasparoli E, Delibori D, Polesello G et al (2002) Clinical predictors in Parkinson’s disease. Neurol Sci 23(Suppl 2):S77–S78. doi:10.1007/s100720200078

    Article  PubMed  Google Scholar 

  • Goetz CG (2011) The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 1(1):a008862

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Esteban JC, Tijero B, Ciordia R et al (2010) Factors influencing the symmetry of Parkinson’s disease symptoms. Clin Neurol Neurosurg 112:302–305

    Article  PubMed  Google Scholar 

  • Gottlob I, Schneider E, Heider W et al (1987) Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 66(4):349–357

    Article  PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258

    Article  PubMed  Google Scholar 

  • Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364

    Article  PubMed  Google Scholar 

  • Harris JP, Atkinson EA, Lee AC, Nithi K, Fowler MS (2003) Hemispace differences in the visual perception of size in left hemiParkinson’s disease. Neuropsychologia 41(7):795–807

    Article  PubMed  Google Scholar 

  • Helmich RC, Derikx LC, Bakker M et al (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20(5):1175–1186

    Article  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978

    PubMed  Google Scholar 

  • Hosokai Y, Nishio Y, Hirayama K et al (2009) Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Mov Disord 24(6):854–862. doi:10.1002/mds.22444

    Article  PubMed  Google Scholar 

  • Ibarretxe-Bilbao N, Tolosa E, Junque C et al (2009) MRI and cognitive impairment in Parkinson’s disease. Mov Disord 24(Suppl 2):S748–S753. doi:10.1002/mds.22670

    Article  PubMed  Google Scholar 

  • Ibarretxe-Bilbao N, Junque C, Marti MJ et al (2011) Brain structural MRI correlates of cognitive dysfunctions in Parkinson’s disease. J Neurol Sci 310(1–2):70–74. doi:10.1016/j.jns.2011.07.054

    Article  PubMed  Google Scholar 

  • Iwasaki Y, Kinoshita M, Ikeda K et al (1989) Cognitive function in Parkinson’s disease: in relation to motor symptoms. Int J Neurosci 47(3–4):295–300

    Article  PubMed  Google Scholar 

  • Jacob EL, Gatto NM, Thompson A et al (2010) Occurrence of depression and anxiety prior to Parkinson’s disease. Parkinsonism Relat Disord 16(9):576–581. doi:10.1016/j.parkreldis.2010.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaywant A, Ellis TD, Roy S, Lin C-C, Neargarder S, Cronin-Golomb A (2016a) Randomized controlled trial of a home-based action observation intervention to enhance walking in Parkinson’s disease. Arch Phys Med Rehabil 97(5):665–73. doi:10.1016/j.apmr.2015.12.029

    Article  PubMed  Google Scholar 

  • Jaywant A, Shiffrar M, Roy S, Cronin-Golomb A (2016) Impaired perception of biological motion in Parkinson’s disease. Neuropsychology. [Epub ahead of print]. doi: 10.1037/neu0000276

    Google Scholar 

  • Jaywant A, Wasserman V, Kemppainen M, Cronin-Golomb A (2016c) Perception of communicative and non-communicative motion-defined gestures in Parkinson’s disease. J Int Neuropsychol Soc 22(5):540–50. doi:10.1017/S1355617716000114

    Article  PubMed  Google Scholar 

  • Jubault T, Gagnon J-F, Karama S et al (2011) Patterns of cortical thickness and surface area in early Parkinson’s disease. Neuroimage 55(2):462–467

    Article  PubMed  Google Scholar 

  • Kan Y, Kawamura M, Hasegawa Y et al (2002) Recognition of emotion from facial, prosodic, and written verbal stimuli in Parkinson’s disease. Cortex 38(4):623–630

    Article  PubMed  Google Scholar 

  • Karnath HO (1997) Spatial orientation and the representation of space with parietal lobe lesions. Philos Trans R Soc Lond B Biol Sci 352(1360):1411–1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Karnath HO, Schenkel P, Fischer B (1991) Trunk orientation as the determining factor of the ‘contralateral’deficit in the neglect syndrome and as the physical anchor of the internal representation of body orientation in space. Brain 114(4):1997–2014

    Article  PubMed  Google Scholar 

  • Kelly VE, Eusterbrock AJ, Shumway-Cook A (2012) A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis 2012:918719. doi:10.1155/2012/918719

    PubMed  Google Scholar 

  • Kempster PA, Gibb WR, Stern GM, Lees AJ (1989) Asymmetry of substantia nigra neuronal loss in Parkinson’s disease and its relevance to the mechanism of levodopa related motor fluctuations. J Neurol Neurosurg Psychiatry 52(1):72–76

    Google Scholar 

  • Kim SE, Lee WY, Choe YS et al (1999) SPECT measurement of iodine-123-beta-CIT binding to dopamine and serotonin transporters in Parkinson’s disease: correlation with symptom severity. Neurol Res 21(3):255–261

    Article  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880. doi:10.1056/nejm198804073181402

    Article  PubMed  Google Scholar 

  • Kounios J, Fleck JI, Green DL et al (2008) The origins of insight in resting-state brain activity. Neuropsychologia 46(1):281–291

    Article  PubMed  Google Scholar 

  • Kupersmith MJ, Shakin E, Siegel IM et al (1982) Visual system abnormalities in patients with Parkinson’s disease. Arch Neurol 39:284–286

    Article  PubMed  Google Scholar 

  • Kwak Y, Peltier S, Bohnen NI et al (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4:143. doi:10.3389/fnsys.2010.00143

    Article  PubMed  PubMed Central  Google Scholar 

  • Laudate TM, Neargarder S, Cronin-Golomb A (2013) Line bisection in Parkinson’s disease: Investigation of contributions of visual field, retinal vision and scanning patterns to visuospatial function. Behav Neurosci 127:151–163. doi:10.1037/a0031618

    Google Scholar 

  • Laulumaa V, Kuikka JT, Soininen H, Bergstrom K, Lansimies E, Riekkinen P (1993) Imaging of D2 dopamine receptors of patients with Parkinson’s disease using single photon emission computed tomography and lodobenzamide I 123. Arch Neurol 50(5):509–512

    Google Scholar 

  • Lebedev AV, Westman E, Simmons A et al (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45. doi:10.3389/fnsys.2014.00045

    PubMed  PubMed Central  Google Scholar 

  • Lee AC, Harris JP, Atkinson EA et al (2001) Evidence from a line bisection task for visuospatial neglect in left hemiparkinson’s disease. Vision Res 41(20):2677–2686

    Article  PubMed  Google Scholar 

  • Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, Jones T, Marsden CD, Frackowiak RSJ (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47(12):1290–1298

    Google Scholar 

  • Leh SE, Chakravarty MM, Ptito A (2008) The connectivity of the human pulvinar: a diffusion tensor imaging tractography study. Int J Biomed Imaging 2008:789539. doi:10.1155/2008/789539

    Article  PubMed  Google Scholar 

  • Levin BE, Llabre MM, Reisman S et al (1991) Visuospatial impairment in Parkinson’s disease. Neurology 41(3):365–369

    Article  PubMed  Google Scholar 

  • Lewis SJ, Cools R, Robbins TW et al (2003a) Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia 41(6):645–654

    Article  PubMed  Google Scholar 

  • Lewis SJ, Dove A, Robbins TW et al (2003b) Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23(15):6351–6356. pii:23/15/6351

    PubMed  Google Scholar 

  • Lewis SJG, Foltynie T, Blackwell AD et al (2005) Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 76:343–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis MM, Du G, Sen S et al (2011) Differential involvement of striato- and cerebello-thalamo-cortical pathways in tremor- and akinetic/rigid-predominant Parkinson’s disease. Neuroscience 177:230–239. doi:10.1016/j.neuroscience.2010.12.060

    Article  PubMed  PubMed Central  Google Scholar 

  • Litvan I, Aarsland D, Adler CH et al (2011) MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord 26(10):1814–1824. doi:10.1002/mds.23823

    Article  PubMed  PubMed Central  Google Scholar 

  • Litvan I, Goldman JG, Troster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27(3):349–356. doi:10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord S, Rochester L, Hetherington V et al (2010) Executive dysfunction and attention contribute to gait interference in ‘off’ state Parkinson’s disease. Gait Posture 31(2):169–174

    Article  PubMed  Google Scholar 

  • Luque-Moreno C, Lopez-Garcia JC, Diaz-Argandona E (2012) Analysis of sustained attention in patients with Parkinson’s disease being treated with dopamine precursors. Rev Neurol 55(5):257–262

    PubMed  Google Scholar 

  • Macdonald PA, Monchi O (2011) Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinsons Dis 2011:572743. doi:10.4061/2011/572743

    PubMed  PubMed Central  Google Scholar 

  • Marceglia S, Fiorio M, Foffani G et al (2009) Modulation of beta oscillations in the subthalamic area during action observation in Parkinson’s disease. Neuroscience 161(4):1027–1036

    Article  PubMed  Google Scholar 

  • Marek KL, Seibyl JP, Zoghbi SS et al (1996) [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46(1):231–237

    Article  PubMed  Google Scholar 

  • Marttila RJ, Rinne UK (1976) Dementia in Parkinson’s disease. Acta Neurol Scand 54(5):431–441

    Article  PubMed  Google Scholar 

  • Matthias E, Bublak P, Costa A et al (2009) Attentional and sensory effects of lowered levels of intrinsic alertness. Neuropsychologia 47(14):3255–3264. doi:10.1016/j.neuropsychologia.2009.08.004

    Article  PubMed  Google Scholar 

  • Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506

    Article  PubMed  Google Scholar 

  • Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667. doi:10.1007/s00429-010-0262-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Mestre D, Blin O, Serratrice G et al (1990) Spatiotemporal contrast sensitivity differs in normal aging and Parkinson’s disease. Neurology 40(11):1710–1714

    Article  PubMed  Google Scholar 

  • Miller IN, Neargarder S, Risi MM et al (2013) Frontal and posterior subtypes of neuropsychological deficit in Parkinson’s disease. Behav Neurosci 127(2):175–183. doi:10.1037/a0031357

    Article  PubMed  PubMed Central  Google Scholar 

  • Monchi O, Petrides M, Petre V et al (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21(19):7733–7741

    PubMed  Google Scholar 

  • Monchi O, Petrides M, Mejia-Constain B et al (2007) Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain 130(Pt 1):233–244

    PubMed  Google Scholar 

  • Moran RJ, Mallet N, Litvak V et al (2011) Alterations in brain connectivity underlying beta oscillations in parkinsonism. PLoS Comput Biol 7(8):e1002124

    Article  PubMed  PubMed Central  Google Scholar 

  • Moustafa AA, Poletti M (2013) Neural and behavioral substrates of subtypes of Parkinson’s disease. Front Syst Neurosci 7:117. doi:10.3389/fnsys.2013.00117

    Article  PubMed  PubMed Central  Google Scholar 

  • Mure H, Hirano S, Tang CC et al (2011) Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54(2):1244–1253. doi:10.1016/j.neuroimage.2010.09.028

    Article  PubMed  Google Scholar 

  • Norton DJ, Jaywant A, Gallart-Palau X, Cronin-Golomb A (2015) Normal discrimination of spatial frequency and contrast across visual hemifields in left-onset Parkinson’s disease: Evidence against perceptual hemifield biases. Vision Res 107:94–100

    Article  PubMed  Google Scholar 

  • Obeso I, Wilkinson L, Casabona E et al (2011) Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 212(3):371–384. doi:10.1007/s00221-011-2736-6

    Article  PubMed  Google Scholar 

  • Ohl FW, Scheich H, Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412(6848):733–736

    Article  PubMed  Google Scholar 

  • Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y et al (2013) Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PLoS One 8(1):e54980

    Article  PubMed  PubMed Central  Google Scholar 

  • Papo D (2013) Why should cognitive neuroscientists study the brain’s resting state? Front Hum Neurosci 7:45. doi:10.3389/fnhum.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  • Paris AP, Saleta HG, de la Cruz Crespo Maraver M et al (2011) Blind randomized controlled study of the efficacy of cognitive training in Parkinson’s disease. Mov Disord 26(7):1251–1258. doi:10.1002/mds.23688

    Article  PubMed  Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50(6):743–755

    Article  PubMed  Google Scholar 

  • Pawela CP, Biswal BB, Hudetz AG et al (2010) Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 49(3):2467–2478

    Article  PubMed  Google Scholar 

  • Pieri V, Diederich N, Raman R et al (2000) Decreased color discrimination and contrast sensitivity in Parkinson’s disease. J Neurol Sci 172(1):7–11

    Article  PubMed  Google Scholar 

  • Pitzalis S, Galletti C, Huang RS et al (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26(30):7962–7973

    Article  PubMed  Google Scholar 

  • Pitzalis S, Sereno MI, Committeri G et al (2010) Human v6: the medial motion area. Cereb Cortex 20(2):411–424

    Article  PubMed  Google Scholar 

  • Plotnik M, Dagan Y, Gurevich T et al (2011) Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson’s disease suffering from motor response fluctuations. Exp Brain Res 208(2):169–179. doi:10.1007/s00221-010-2469-y

    Article  PubMed  Google Scholar 

  • Poletti M, De Rosa A, Bonuccelli U (2012) Affective symptoms and cognitive functions in Parkinson’s disease. J Neurol Sci 317(1–2):97–102

    Article  PubMed  Google Scholar 

  • Poliakoff E, Galpin A, Dick J et al (2007) The effect of viewing graspable objects and actions in Parkinson’s disease. Neuroreport 18(5):483–487

    Article  PubMed  Google Scholar 

  • Postuma RB, Aarsland D, Barone P et al (2012) Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov Disord 27(5):617–626

    Article  PubMed  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154

    Article  PubMed  Google Scholar 

  • Price MJ, Feldman RG, Adelberg D et al (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890

    Article  PubMed  Google Scholar 

  • Provost JS, Petrides M, Monchi O (2010) Dissociating the role of the caudate nucleus and dorsolateral prefrontal cortex in the monitoring of events within human working memory. Eur J Neurosci 32(5):873–880. doi:10.1111/j.1460-9568.2010.07333.x

    Article  PubMed  Google Scholar 

  • Putcha D, Ross RS, Rosen ML et al (2014) Functional correlates of optic flow motion processing in Parkinson’s disease. Front Integr Neurosci 8:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE (2015) Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage Clin 7:449–455. doi:10.1016/j.nicl.2015.01.012

    Google Scholar 

  • Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE (2016) Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson’s Disease. J Int Neuropsychol Soc 22(2):205–215. doi:10.1017/S1355617715000892

    Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravina B, Marek K, Eberly S et al (2012) Dopamine transporter imaging is associated with long-term outcomes in Parkinson’s disease. Mov Disord 27(11):1392–1397. doi:10.1002/mds.25157

    Article  PubMed  Google Scholar 

  • Reid WG, Broe GA, Hely MA et al (1989) The neuropsychology of de novo patients with idiopathic Parkinson’s disease: the effects of age of onset. Int J Neurosci 48(3–4):205–217

    Article  PubMed  Google Scholar 

  • Richard C, Rousseaux M, Saj A, Honoré J (2004) Straight ahead in spatial neglect: evidence that space is shifted, not rotated. Neurology 63(11):2136–2138

    Article  PubMed  Google Scholar 

  • Robertson IH, Manly T, Beschin N et al (1997) Auditory sustained attention is a marker of unilateral spatial neglect. Neuropsychologia 35(12):1527–1532

    Article  PubMed  Google Scholar 

  • Rochester L, Hetherington V, Jones D et al (2004) Attending to the task: interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Arch Phys Med Rehabil 85(10):1578–1585

    Article  PubMed  Google Scholar 

  • Rogers RD, Monsell S (1995) Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124(2):207

    Article  Google Scholar 

  • Saenz A, Doe de Maindreville A, Henry A et al (2013) Recognition of facial and musical emotions in Parkinson’s disease. Eur J Neurol 20(3):571–577

    Article  PubMed  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev 35(2):146–160

    Article  PubMed  Google Scholar 

  • Schendan HE, Amick MM, Cronin-Golomb A (2009) Role of a lateralized parietal-basal ganglia circuit in hierarchical pattern perception: evidence from Parkinson’s disease. Behav Neurosci 123(1):125–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Schendan HE, Tinaz S, Maher SM et al (2013) Frontostriatal and mediotemporal lobe contributions to implicit higher-order spatial sequence learning declines in aging and Parkinson’s disease. Behav Neurosci 127(2):204–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    Article  PubMed  PubMed Central  Google Scholar 

  • Seger CA, Cincotta CM (2005) The roles of the caudate nucleus in human classification learning. J Neurosci 25(11):2941–2951. doi:10.1523/JNEUROSCI.3401-04.2005

    Article  PubMed  Google Scholar 

  • Seger CA, Cincotta CM (2006) Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cereb Cortex 16(11):1546–1555. doi:10.1093/cercor/bhj092

    Article  PubMed  Google Scholar 

  • Seichepine DR, Neargarder S, Miller IN et al (2011) Relation of Parkinson’s disease subtypes to visual activities of daily living. J Int Neuropsychol Soc 17:841–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Seichepine DR, Neargarder S, Davidsdottir S, Reynolds GO, Cronin-Golomb A (2015) Side and type of initial motor symptom influences visuospatial functioning in Parkinson’s disease. J Parkinsons Dis 5(1):75–83. doi:10.3233/JPD-140365

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5(3):776–794

    PubMed  Google Scholar 

  • Selikhova M, Williams DR, Kempster PA et al (2009) A clinico-pathological study of subtypes in Parkinson’s disease. Brain 132:2947–2957

    Article  PubMed  Google Scholar 

  • Seppi K, Weintraub D, Coelho M et al (2011) The Movement Disorder Society Evidence-Based Medicine Review Update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord 26(Suppl 3):S42–S80. doi:10.1002/mds.23884

    Article  PubMed  PubMed Central  Google Scholar 

  • Shine JM, Matar E, Ward PB et al (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136(Pt 12):3671–3681

    Article  PubMed  Google Scholar 

  • Shine JM, Halliday GM, Gilat M et al (2014) The role of dysfunctional attentional control networks in visual misperceptions in Parkinson’s disease. Hum Brain Mapp 35(5):2206–2219. doi:10.1002/hbm.22321

    Article  PubMed  Google Scholar 

  • Shulman LM (2010) Understanding disability in Parkinson’s disease. Mov Disord 25(Suppl 1):S131–S135. doi:10.1002/mds.22789

    Article  PubMed  Google Scholar 

  • Siepel FJ, Bronnick KS, Booij J et al (2014) Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov Disord 29(14):1802–1808. doi:10.1002/mds.26051

    Article  PubMed  Google Scholar 

  • Sinforiani E, Banchieri L, Zucchella C et al (2004) Cognitive rehabilitation in Parkinson’s disease. Arch Gerontol Geriatr Suppl 9:387–391. doi:10.1016/j.archger.2004.04.049

    Article  Google Scholar 

  • Sollinger AB, Goldstein FC, Lah JJ et al (2010) Mild cognitive impairment in Parkinson’s disease: subtypes and motor characteristics. Parkinsonism Relat Disord 16(3):177–180

    Article  PubMed  Google Scholar 

  • Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105(34):12569–12574

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepkina DA, Zakharov VV, Yakhno NN (2010) Cognitive impairments in progression of Parkinson’s disease. Neurosci Behav Physiol 40(1):61–67. doi:10.1007/s11055-009-9223-6

    Article  PubMed  Google Scholar 

  • Szczepanski SM, Pinsk MA, Douglas MM, Kastner S, Saalmann YB (2013) Functional and structural architecture of the human dorsal frontoparietal attention network. Proc Natl Acad Sci USA 110(39):15806–15811. doi:10.1073/pnas.1313903110

    Article  PubMed  PubMed Central  Google Scholar 

  • Takakusaki K, Oohinata-Sugimoto J, Saitoh K et al (2004) Role of basal ganglia-brainstem systems in the control of postural muscle tone and locomotion. Prog Brain Res 143:231–237. doi:10.1016/S0079-6123(03)43023-9

    Article  PubMed  Google Scholar 

  • Taylor JP, Rowan EN, Lett D et al (2008) Poor attentional function predicts cognitive decline in patients with non-demented Parkinson’s disease independent of motor phenotype. J Neurol Neurosurg Psychiatry 79:1318–1323

    Article  PubMed  Google Scholar 

  • Tessitore A, Esposito F, Vitale C et al (2012) Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79:2226–2232

    Article  PubMed  Google Scholar 

  • Tinaz S, Schendan HE, Stern CE (2008) Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging 29(3):397–407

    Article  PubMed  Google Scholar 

  • Tinaz S, Courtney MG, Stern CE (2011) Focal cortical and subcortical atrophy in early Parkinson’s disease. Mov Disord 26(3):436–441. doi:10.1002/mds.23453

    Article  PubMed  Google Scholar 

  • Tootell RB, Mendola JD, Hadjikhani NK et al (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078

    PubMed  Google Scholar 

  • Trick GL, Kaskie B, Steinman SB (1994) Visual impairment in Parkinson’s disease: deficits in orientation and motion discrimination. Optom Vis Sci 71(4):242–245

    Article  PubMed  Google Scholar 

  • Uc EY, Rizzo M, Anderson SW et al (2005) Visual dysfunction in Parkinson disease without dementia. Neurology 65(12):1907–1913

    Article  PubMed  Google Scholar 

  • Uddin LQ, Supekar K, Amin H et al (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20(11):2636–2646. doi:10.1093/cercor/bhq011

    Article  PubMed  PubMed Central  Google Scholar 

  • Uitti RJ, Baba Y, Whaley NR et al (2005) Parkinson disease: handedness predicts asymmetry. Neurology 64(11):1925–1930

    Article  PubMed  Google Scholar 

  • van Eimeren T, Monchi O, Ballanger B et al (2009) Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol 66(7):877–883

    PubMed  PubMed Central  Google Scholar 

  • Vaugoyeau M, Azulay JP (2010) Role of sensory information in the control of postural orientation in Parkinson’s disease. J Neurol Sci 289(1–2):66–68

    Article  PubMed  Google Scholar 

  • Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18(3):191–194

    Article  PubMed  Google Scholar 

  • Weinberger M, Hutchison WD, Lozano AM et al (2009) Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J Neurophysiol 101(2):789–802. doi:10.1152/jn.90837.2008

    Article  PubMed  Google Scholar 

  • White OB, Saint-Cyr JA, Tomlinson RD et al (1983) Ocular motor deficits in Parkinson’s disease: II. Control of the saccadic and smooth pursuit systems. Brain 112:1573–1586

    Google Scholar 

  • Williams-Gray CH, Foltynie T, Brayne CE et al (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130(Pt 7):1787–1798. doi:10.1093/brain/awm111

    Article  PubMed  Google Scholar 

  • Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1):1–14

    Article  PubMed  Google Scholar 

  • Yao H, Shi L, Han F et al (2007) Rapid learning in cortical coding of visual scenes. Nat Neurosci 10(6):772–778

    Article  PubMed  Google Scholar 

  • Young DE, Wagenaar RC, Lin CC et al (2010) Visuospatial perception and navigation in Parkinson’s disease. Vision Res 50(23):2495–2504

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the collaborators on our studies of Parkinson’s disease cited in this chapter, including Melissa Amick, Erica Appleman, Bo Cao, Ying-hui Chou, Uraina Clark, Sigurros Davidsdottir, Joseph DeGutis, Mirella Diaz-Santos, Terry Ellis, Xavier Gallart-Palau, Giorgio Ganis, Grover C. Gilmore, Amy Janes, Cheng-Chieh Lin, Samantha Mauro, Ivy Miller, Giovanni Musto, Sandy Neargarder, Daniel Norton, Tatiana Riedel, Xiaolin Ren, Megan Risi, Maya Rosen, Robert Ross, Serge Roy, Marie Saint-Hilaire, Robert Salazar, Elliot Saltzman, Haline Schendan, Daniel Seichepine, David Somers, Karina Stavitsky Gilbert, Chantal Stern, Cathi Thomas, Arash Yazdanbakhsh, and Daniel Young, and we remember with gratitude the contributions of our late colleague, Robert Wagenaar. This work was supported by grants from the National Institute of Neurological Disorders and Stroke, including RO1 NS067128 to A.C.G. and a Ruth L. Kirschstein National Research Service Award (F31 NS078919) to A.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Cronin-Golomb Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Putcha, D., Jaywant, A., Cronin-Golomb, A. (2016). Cognitive and Perceptual Impairments in Parkinson’s Disease Arising from Dysfunction of the Cortex and Basal Ganglia. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_9

Download citation

Publish with us

Policies and ethics