Skip to main content

Limbic-Basal Ganglia Circuits Parallel and Integrative Aspects

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

Following the pioneering research of Walle Nauta and Lennart Heimer in the seventies of last century, it became increasingly accepted that the basal ganglia, next to motor functions, have an important role in cognitive, emotional, and motivational behavior. The ventral part of the striatum, prominently including the nucleus accumbens, plays a key role in this now well-accepted concept of the basal ganglia functions. The present chapter briefly reviews the early insights and subsequently focuses on the present view on the ‘limbic’ ventral striatum and its distinction from the dorsal striatum (caudate-putamen complex). However, with respect to many features, like cytoarchitecture, connectivity, and histochemical composition, the dorsal and ventral striatum show strong parallels. Distinctive for the ventral striatum are the strong inputs from limbic structures like the basal amygdala, hippocampus, and entorhinal cortex. Furthermore, medial and lateral prefrontal areas project heavily to the ventral striatum. Also subcortical inputs, like those from the ventral tegmental area, raphe nuclei, locus coeruleus, and midline thalamic nuclei, are rather specific for subregions in the ventral striatum. The heterogeneity of the mesencephalic projections, including dopaminergic, glutamatergic, GABAergic, cholinergic, and serotonergic fibers, is being discussed. Like in the dorsal striatum, GABAergic and cholinergic interneurons via their afferents from prefrontal cortex and thalamus form important links in modulating and synchronizing the activity of the medium-size spiny output neurons. The interneurons in the ventral striatum are mostly comparable in their architecture and physiological properties with their counterparts in the dorsal striatum, but there appear to be also some subtle differences. The output of the ventral striatum reaches several basal forebrain structures, like the ventral pallidum, parts of the extended amygdala, lateral preoptic and lateral hypothalamic areas and, finally, different nuclei in the mesencephalon like the ventral tegmental area, substantia nigra, and the midbrain extrapyramidal area. Taking into account the projections from the main target of the ventral striatum, i.e., the ventral pallidum, it is clear that the ‘limbic’, ventral striatum contributes to an extended basal ganglia circuitry that involves the return projections to the prefrontal cortex via various thalamic nuclei, projections to the ventral mesencephalon, potentially influencing the monoaminergic ascending projection systems, as well as a loop through the lateral hypothalamic-lateral habenula circuitry, which has a role in regulating both the dopaminergic and serotonergic cell groups via the GABAergic neurons in the rostromedial tegmental nucleus (RMTg) in the ventral mesencephalon. Finally, some functional aspects and future perspectives are being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term ‘limbic’ deserves some attention since it is being widely used in the literature, but often in different ways. We should still keep in mind the words of A. Brodal (1981, page 690), namely that the term looses its meaning when the structural and functional definitions do not coincide and become so diffuse that finally the entire brain can be considered to belong to the ‘limbic system’ (cf. also Nauta 1986; Nieuwenhuys 1996). However, whereas the term ‘limbic’ cannot be discarded nowadays, it remains very important to define what is exactly meant with the term and which brain areas are considered to be part of the ‘limbic system’. Even though these structures may have quite diverse functions, we consider the amygdala, hippocampus and hypothalamus as the ‘core structures’ of the limbic system. Brain regions that are directly influenced by these core limbic structures are considered also to belong to the limbic system, i.e., in rodents the ventromedial and insular parts of the prefrontal cortex, midline thalamic nuclei and structures along the pathway of the medial forebrain bundle (preoptic, hypothalamic and medial midbrain structures). As indicated in the text, the region of the striatum innervated by ‘limbic’ brain structures mentioned here is considered the ‘limbic striatum’. Nevertheless, the borders between ‘limbic’ and ‘associative/cognitive’ related parts of the striatum remain diffuse.

  2. 2.

    In primates the posterior-to-anterior axis in the hippocampal formation corresponds to the dorsal-to-ventral axis in rodents.

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Prog Brain Res 85:119–146

    Article  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    Article  PubMed  Google Scholar 

  • Aoki C, Pickel VM (1990) Neuropeptide Y in cortex and striatum. Ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann N Y Acad Sci 611:186–205

    Article  PubMed  Google Scholar 

  • Aosaki T, Miura M, Suzuki T et al (2010) Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int 10(suppl 1):S148–S157

    Article  PubMed  Google Scholar 

  • Asher A, Lodge DJ (2012) Distinct prefrontal cortical regions negatively regulate evoked activity in nucleus accumbens subregions. Int J Neuropsychopharmacol 15:1287–1294

    Article  PubMed  Google Scholar 

  • Barnes KA, Cohen AL, Power JD et al (2010) Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI. Front Syst Neurosci 4:18. doi:10.3389/fnsys.2010.00018

    PubMed  PubMed Central  Google Scholar 

  • Barrot M, Sesack SR, Georges F et al (2012) Braking dopamine systems: a new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci 32:14094–15101

    Article  PubMed  PubMed Central  Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    Article  PubMed  Google Scholar 

  • Bennett BD, Bolam JP (1994) Synaptic input and output of parvalbumin-immunoreactive neurones in the neostriatum of the rat. Neuroscience 62:707–719

    Article  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    Article  PubMed  Google Scholar 

  • Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347

    Article  PubMed  Google Scholar 

  • Berridge CW, Stratford TL, Foote SL et al (1997) Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27:230–241

    Article  PubMed  Google Scholar 

  • Bolam JP, Hanley JJ, Booth PAC et al (2000) Synaptic organisation of the basal ganglia. J Anat 196:527–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York, p 690

    Google Scholar 

  • Brog JS, Salypongse A, Deutch AY et al (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    Article  PubMed  Google Scholar 

  • Brown P, Molliver ME (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine induced neurotoxicity. J Neurosci 20:1952–1963

    PubMed  Google Scholar 

  • Brown MT, Tan KR, O’Connor EC et al (2012) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492:452–456

    Article  PubMed  Google Scholar 

  • Calhoon GG, O’Donnell P (2013) Closing the gate in the limbic striatum: prefrontal suppression of hippocampal and thalamic inputs. Neuron 78:2181–2190

    Article  Google Scholar 

  • Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlzon WA, Thomas MJ (2009) Biological substrates for reward and aversion: a nucleus accumbens activity hypothesis. Neuropsychopharmacology 56:122–132

    Google Scholar 

  • Castro DC, Cole SL, Berridge KC (2015) Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 9(90):1–17

    Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Article  PubMed  Google Scholar 

  • Chuhma N, Choi WY, Mingote S et al (2009) Dopamine neuron glutamate cotransmission: frequency-dependent modulation in the mesoventromedial projection. Neuroscience 164:1068–1083

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuhma N, Mingote S, Moore H et al (2014) Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 81:901–912

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50:873–880

    Article  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  Google Scholar 

  • Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69:680–694

    Article  PubMed  Google Scholar 

  • Dautan D, Huerta-Ocampo I, Witten IB et al (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518

    Article  PubMed  PubMed Central  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP et al (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  Google Scholar 

  • DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brooks VB (ed) Handbook of physiology, vol 2, The nervous system. American Physiological Society, Bethesda, pp 1017–1062

    Google Scholar 

  • Ding JB, Guzman JN, Peterson JD et al (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in the Mouse striatum. J Neurosci 30:14610–14618

    Article  PubMed  Google Scholar 

  • Dudman JT, Gerfen CR (2015) The basal ganglia. In: Paxinos G (ed) The rat nervous system, 4th edn. Elsevier, Amsterdam, pp 391–440

    Chapter  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013

    PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2015) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol. doi:10.1146/annurev-psych-122414-033457

    PubMed  Google Scholar 

  • Feekes JA, Cassell MD (2006) The vascular supply of the functional compartments of the human striatum. Brain 129:2189–2201

    Article  PubMed  Google Scholar 

  • Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–1263

    PubMed  Google Scholar 

  • Floresco SB (2015) The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 66:25–52

    Article  PubMed  Google Scholar 

  • Friedman DP, Aggleton JP, Saunders RC (2002) Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 450:345–365

    Article  PubMed  Google Scholar 

  • Friedman A, Homma D, Gibb LG et al (2015) A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:1320–1333

    Article  PubMed  PubMed Central  Google Scholar 

  • Fudge JL, Breitbart MA, McClain C (2004) Amygdaloid inputs define a caudal component of the ventral striatum in primates. J Comp Neurol 476:330–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Gage GJ, Stoetzner CR, Wiltschko AB et al (2010) Selective activation of striatal fast-spiking interneurons during choice execution. Neuron 67:466–467

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat—anatomical substratum for integrative functions. J Comp Neurol 490:270–294

    Article  PubMed  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    Article  PubMed  Google Scholar 

  • Gernert M, Hamann M, Bennay M et al (2000) Deficit of striatal parvalbumin-reactive GABAergic interneurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia. J Neurosci 20:7052–7058

    PubMed  Google Scholar 

  • Gill KM, Grace AA (2011) Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens. Int J Neuropsychopharmacol 14:1301–1314

    Article  PubMed  PubMed Central  Google Scholar 

  • Gittis AH, Nelson AB, Thwin MT et al (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonçalves L, Sego C, Metzger M (2012) Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J Comp Neurol 520:1278–1300

    Article  PubMed  Google Scholar 

  • Gonzales KK, Smith Y (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 1349:1–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales KK, Pare JF, Wichmann T et al (2013) GABAergic inputs from direct and indirect projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 5212:2502–2522

    Article  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726

    Article  PubMed  PubMed Central  Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 294:607–622

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994) The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Uylings HBM (2010) Organization of prefrontal-striatal connections. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function: a decade of progress. Academic, San Diego, pp 353–365

    Chapter  Google Scholar 

  • Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A et al (1987) Organization of the projections from the subiculum to the ventral striatum in the rat: a study using anterograde transport of Phaseolus vulgaris-leucoagglutinin. Neuroscience 23:103–120

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW, Wolters JG et al (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–118

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AVJ (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV et al (1999a) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Mulder AB, Beijer AVJ et al (1999b) Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology 27:149–164

    Google Scholar 

  • Groenewegen HJ, Galis-de Graaf Y, Smeets WJAJ (1999c) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 16:167–185

    Article  PubMed  Google Scholar 

  • Haber SN, Behrens TE (2014) The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83:1019–1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74

    Article  PubMed  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  Google Scholar 

  • Haber SN, Kim KS, Mailly P et al (2007) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. Eur J Neurosci 26:2005–2024

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 33:4804–4814

    Article  PubMed  PubMed Central  Google Scholar 

  • Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN (2016) Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry pii: S0006-3223(16)32388–5. doi:10.1016/j.biopsych.2016.05.012. [Epub ahead of print]

    Google Scholar 

  • Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium: perspectives in neurobiology. Raven, New York, pp 177–193

    Google Scholar 

  • Heimer L, Zahm DS, Churchill L et al (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125

    Article  PubMed  Google Scholar 

  • Heimer L, Alheid GF, de Olmos JS et al (1997) The accumbens, beyond the core-shell dichotomy. J Neuropsychiatr Clin Neurosci 9:354–381

    Article  Google Scholar 

  • Heimer L, De Olmos JS, Alheid GF et al (1999) The human basal forebrain. Part II. In: Bloom FE, Bjorkland A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 57–226

    Google Scholar 

  • Hikosaka O, Kim HF, Yasuda M et al (2014) Basal ganglia circuits for reward value-guided behavior. Annu Rev Neurosci 37:289–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Hnasko TS, Chuhma N, Zhang H et al (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90:385–417

    Article  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikemoto S, Yang C, Tan A (2015) Basal ganglia circuit loops, dopamine and motivation: a review and inquiry. Behav Brain Res 290:17–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon HA, Anwander A, Friederici AD (2014) Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity. J Neurosci 34:9202–9212

    Article  PubMed  Google Scholar 

  • Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63:363–379

    Article  PubMed  Google Scholar 

  • Jung WH, Jang JH, Park JW et al (2014) Unraveling the intrinsic functional organization of the human striatum: a parcellation and connectivity study based on resting-state fMRI. PLoS One 9(9), e106768. doi:10.1371/journal.pone.0106768

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalanithi PS, Zheng W, Kataoka Y et al (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 102:13307–13312

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley AE (1999) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 27:198–213

    Google Scholar 

  • Kerfoot EC, Chattillion EA, Williams CL (2008) Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences. Neurobiol Learn Mem 89:47–60

    Article  PubMed  Google Scholar 

  • Kim HF, Hikosaka O (2013) Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron 79:1001–1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HF, Hikosaka O (2015) Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 138:1776–1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374:578–592

    Article  PubMed  Google Scholar 

  • Kotz S, Anwander A, Axer H et al (2014) Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus. PLos One 8(7), e70141. doi:10.1371/journal.pone.0070141

    Article  Google Scholar 

  • Kupchik YM, Brown RM, Heinsbroek JA et al (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18:1230–1232

    Article  PubMed  PubMed Central  Google Scholar 

  • Lammel S, Lim BK, Ran C et al (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76(Pt B):351–359

    Article  PubMed  Google Scholar 

  • Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545

    Article  PubMed  Google Scholar 

  • Lehericy S, Ducros M, Krainik A et al (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections in the human striatum. Cereb Cortex 14:1302–1309

    Article  PubMed  Google Scholar 

  • Mailly P, Haber SN, Groenewegen HJ et al (2010) A 3D multi-model and multidimensional digital brain model as a framework for data sharing. J Neurosci Methods 194:56–63

    Article  PubMed  Google Scholar 

  • Mailly P, Aliane V, Groenewegen HJ et al (2013) The rat prefrontal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33:5718–5727

    Article  PubMed  Google Scholar 

  • Mallet N, Le Moine C, Charpier S et al (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869

    Article  PubMed  Google Scholar 

  • Mallet N, Ballion B, Le Moine C et al (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884

    Article  PubMed  Google Scholar 

  • Matsumoto M, Hikosaka O (2008) Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12:77–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Mega MS, Cummings JL (1994) Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6:358–370

    Article  PubMed  Google Scholar 

  • Meredith GE, Wouterlood FG (1990) Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study. J Comp Neurol 296:204–221

    Article  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  PubMed  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 43:111–117

    Article  PubMed  Google Scholar 

  • Nauta WJH (1986) Circuitrous connections linking cerebral cortex, limbic system, and corpus striatum. In: Doane DK, Livingstone KE (eds) The limbic system: functional organization and clinical disorders. Raven, New York, pp 43–54

    Google Scholar 

  • Nauta WJH, Smith GP, Faull RL et al (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3:385–401

    Article  PubMed  Google Scholar 

  • Nelson AB, Hammack N, Yang CF et al (2014) Striatal cholinergic interneurons drive GABA release from dopaminergic terminals. Neuron 82:63–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580

    Article  PubMed  Google Scholar 

  • Parent A, Hazrati L-N (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  PubMed  Google Scholar 

  • Parent A, Hazrati L-N (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154

    Article  PubMed  Google Scholar 

  • Parthasarathy HB, Graybiel AM (1997) Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J Neurosci 17:2477–2491

    PubMed  Google Scholar 

  • Peciña S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25:11777–11786

    Article  PubMed  Google Scholar 

  • Pennartz CMA, Groenewegen HJ, Lopes Da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719–761

    Article  PubMed  Google Scholar 

  • Pennartz CM, Berke JD, Graybiel AM et al (2009) Corticosriatal interactions during learning, memory processing, and decision making. J Neurosci 29:8965–8976

    Article  PubMed  Google Scholar 

  • Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:1508–1521

    Article  PubMed  Google Scholar 

  • Ramanathan S, Hanley JJ, Deniau JM et al (2002) Synaptic convergence of motor and somatosensory afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22:8158–8169

    PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    Article  PubMed  Google Scholar 

  • Reep RL, Cheatwood JL, Corwin JV (2003) The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467:271–292

    Article  PubMed  Google Scholar 

  • Richard JM, Castro DC, Difeliceantonio AG et al (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37:1919–1931

    Article  PubMed  Google Scholar 

  • Rye DB, Saper CB, Lee HJ et al (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528

    Article  PubMed  Google Scholar 

  • Satoh K, Fibiger HC (1986) Cholinergic neurons in the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302

    Article  PubMed  Google Scholar 

  • Schilman EA, Uylings HBM, Galis-de Graaf Y et al (2008) The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci Lett 432:40–45

    Article  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  Google Scholar 

  • Sherman D, Fuller PM, Marcus J et al (2015) Anatomical location of the mesencephalic locomotor region and its possible role in locomotion, posture, cataplexy, and Parkinsonism. Front Neurol 6:140. doi:10.3389/fneur.2015.00140

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Raju DV, Pare JF et al (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  PubMed  Google Scholar 

  • Smith Y, Raju D, Nanda B et al (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68

    Article  PubMed  Google Scholar 

  • Stefanik MT, Kupchik YM, Brown RM et al (2013) Optogenetic evidence that pallidal projections, not nigral projections, from the nucleus accumbens core are necessary for reinstating cocaine seeking. J Neurosci 33:13654–13662

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens JR (1973) An anatomy of schizophrenia? Arch Gen Psychiatry 29:177–189

    Article  PubMed  Google Scholar 

  • Stoessl AJ, Lehericy S, Strafella AP (2014) Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. Lancet 384:532–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Stopper CM, Floresco SB (2014) What’s better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat Neurosci 17:33–35

    Article  PubMed  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP et al (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233

    Article  PubMed  PubMed Central  Google Scholar 

  • Taverna S, Canciani B, Pennartz CM (2007) Membrane properties and synaptic connectivity of fast-spiking interneurons in rat ventral striatum. Brain Res 1152:49–56

    Article  PubMed  Google Scholar 

  • Taylor SR, Badurek S, Dileone RJ et al (2014) GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 522:3308–3334

    Article  PubMed  PubMed Central  Google Scholar 

  • Temel Y, Blokland A, Steinbusch HW et al (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76:393–413

    Article  PubMed  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  PubMed  Google Scholar 

  • Threlfell S, Craig SJ (2011) Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 5(11):149–158. doi:10.3389/fnsys.2011.00011

    Google Scholar 

  • Tong J, Hornykiewicz O, Kish S (2005) Identification of a noradrenalin-rich subdivision of the human nucleus accumbens. J Neurochem 96:349–354

    Article  PubMed  Google Scholar 

  • Totterdell S, Meredith GE (1997) Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience 78:715–729

    Article  PubMed  Google Scholar 

  • Tremblay L, Worbe Y, Thobois S et al (2015) Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov Disord 30:1155–1170

    Article  PubMed  Google Scholar 

  • Tripathi A, Prensa L, Cebrián C et al (2010) Axonal branching patterns of nucleus accumbens neurons in the rat. J Comp Neurol 518:4649–4673

    Article  PubMed  Google Scholar 

  • Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218:1133–1157

    Article  PubMed  Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnstall MJ, Oorschot DE, Kean A et al (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88:1263–1269

    Google Scholar 

  • Van Dongen YC, Deniau JM, Pennartz CMA et al (2005) Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens. Neuroscience 136:1049–1071

    Article  PubMed  Google Scholar 

  • Van Dongen YC, Kolomiets BP, Groenewegen HJ, Thierry AM, Deniau JM (2009) A subpopulation of mesencephalic dopamine neurons interfaces the shell of nucleus accumbens and dorsolateral striatum in rats. In: Groenewegen HJ, Voorn P, Berendse HW, Mulder AB, Cools AR (eds) The Basal Ganglia IX, Advances Behavioral Biology 58. Springer, New York, pp 119–130

    Google Scholar 

  • Van Zessen R, Philips JL, Budygin EA et al (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73:1184–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorn P (2010) Pallido-striatal connections. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function: a decade of progress. Academic, San Diego, pp 249–257

    Chapter  Google Scholar 

  • Voorn P, Jorritsma-Byham B, Van Dijk C et al (1986) The dopaminergic innervation of the ventral striatum in the rat: a light- and electron-microscopical study with antibodies against dopamine. J Comp Neurol 251:84–99

    Article  PubMed  Google Scholar 

  • Voorn P, Gerfen CR, Groenewegen HJ (1989) The compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium binding protein. J Comp Neurol 289:189–201

    Article  PubMed  Google Scholar 

  • Voorn P, Vanderschuren LJMJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474

    Article  PubMed  Google Scholar 

  • Willner P, Scheel-Kruger J, Belzung C (2013) The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 37:2331–2371

    Article  PubMed  Google Scholar 

  • Wouterlood FG, Hartig W, Groenewegen HJ, Voorn P (2012) Density gradients of vesicular glutamate- and GABA transporter-immunoreactive boutons in calbindin and μ-opioid receptor-defined compartments in the rat striatum. J Comp Neurol 520:2123–2142

    Article  PubMed  Google Scholar 

  • Wright CI, Beijer AV, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 16:1877–1893

    PubMed  Google Scholar 

  • Wright AK, Norrie L, Ingham CA et al (1999) Double anterograde tracing of outputs from adjacent “barrel columns” of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience 88:119–133

    Article  PubMed  Google Scholar 

  • Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63

    Article  PubMed  Google Scholar 

  • Yetnikoff L, Lavezzi HN, Reichard RA et al (2014) An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282C:23–48

    Article  Google Scholar 

  • Yetnikoff L, Cheng AY, Lavezzi HN et al (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523:2426–2456

    Article  PubMed  PubMed Central  Google Scholar 

  • Záborszky L, Alheid GF, Beinfeld MC et al (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14:427–453

    Article  PubMed  Google Scholar 

  • Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105

    Article  PubMed  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767

    Article  PubMed  Google Scholar 

  • Zahm DS, Heimer L (1990) Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 302:437–446

    Article  PubMed  Google Scholar 

  • Zahm DS, Parsley KP, Schwartz ZM et al (2013) On the lateral septum-like characteristics of outputs from the accumbal hedonic “hotspot” of Peciña and Berridge with commentary on the translational nature of basal forebrain “boundaries”. J Comp Neurol 521:50–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87:1007–1017

    PubMed  Google Scholar 

  • Zhou W, Liu H, Zhang F, Tang S, Zhu H, Lai M, Kalivas PW (2007) Role of acetylcholine transmission in nucleus accumbens and ventral tegmental area in heroin-seeking induced by conditioned cues. Neuroscience 144:1209–1218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk J. Groenewegen M.D. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Groenewegen, H.J., Voorn, P., Scheel-Krüger, J. (2016). Limbic-Basal Ganglia Circuits Parallel and Integrative Aspects. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_2

Download citation

Publish with us

Policies and ethics