Skip to main content

Fiber Optic Sensors Based on Multicore Structures

  • Chapter
  • First Online:
Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

We present a review of the fundamentals and applications of fiber optic sensors based on multicore coupled structures. The fundamentals of these coupled structures are approached in general for arbitrary distributions of N cores on the foundations of coupled mode theory. The principle of operation of fiber optic sensors using this type of architectures is illustrated via numerical simulations of the simplest coupled structure—the two-core fiber. Illustrative experimental results using fiber optic sensors based on two- and seven-core multicore fibers are shown for a number of applications including temperature, curvature, and refractive index sensing. The main aspects of the performance of multicore fiber sensors are highlighted throughout this chapter and their characteristics, especially their sensitivity, are compared to those of other existing fiber sensing architectures such as fiber Bragg gratings, long period gratings, and photonic crystal fibers, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Kishi, E. Yamashita, A simple coupled-mode analysis method for multiple-core optical fiber and coupled dielectric waveguide structures, in Microwave Symposium Digest, 1988, IEEE MTT-S International (IEEE, 1988), pp. 739–742

    Google Scholar 

  2. K. Okamoto, Fundamentals of Optical Waveguides, 2nd edn. (Academic Press, Elsevier, 2006)

    Google Scholar 

  3. A. Hardy, W. Streifer, Coupled mode theory of parallel waveguides. J. Lightwave Technol. LT-3(5), 1135–1146 (1985)

    Google Scholar 

  4. W. Snyder, Coupled-mode theory for optical fibers. J. Opt. Soc. Am. 62(11), 1267–1277 (1972)

    Article  Google Scholar 

  5. H. Kogelnik, R.V. Schmidt, Switched directional couplers with alternating Δβ. IEEE J. Quantum Electron. 12(7), 396–401 (1976)

    Article  Google Scholar 

  6. A.W. Snyder, P. Richmond, Effect of anomalous dispersion on visual photoreceptors. J. Opt. Soc. Am. 62(11), 1278–1283 (1972)

    Article  Google Scholar 

  7. Y. Murakami, S. Sudo, Coupling characteristics measurements between curved waveguides using a two-corefiber coupler. Appl. Opt. 20(3), 417–422 (1981)

    Article  Google Scholar 

  8. C. Xia, N. Bai, I. Ozdur, X. Zhou, G. Li, Supermodes for optical transmission. Opt. Express 19(17), 16653–16664 (2011)

    Article  Google Scholar 

  9. A. Perez-Leija, J.C. Hernandez-Herrejon, H. Moya-Cessa, A. Szameit, D.N. Christodoulides, Generating photon-encoded W states in multiport waveguide-array systems. Phys. Rev. A 87(1), 013842 (2013)

    Article  Google Scholar 

  10. S. Yin, C. Zhan, P. Ruffin, Fiber optic bio and chemical sensors, in Fiber Optic Sensors, ed. by S.S. Yin, P. Ruffin (Wiley, 2002)

    Google Scholar 

  11. M. Ben-David, I. Gannot, Optical fibers for biomedical applications, in Specialty Optical Fibers Handbook, ed. by A. Méndez, T.F. Morse (Academic Press, 2011)

    Google Scholar 

  12. J.R. Guzmán-Sepúlveda, R. Guzmán-Cabrera, M. Torres-Cisneros, J.J. Sánchez-Mondragón, D.A. May-Arrioja, A highly sensitive fiber optic sensor based on two-core fiber for refractive index measurement. Sensors 13(10), 14200–14213 (2013)

    Article  Google Scholar 

  13. L. Zhang, W. Zhang, I. Bennion, Ch. 4 “In-fiber grating optic sensors,” in Fiber optic sensors, ed. by S.S. Yin, P. Ruffin (Wiley, 2002)

    Google Scholar 

  14. R. Kashyap, Ch. 10 “Principle of optical fiber grating sensors,” in Fiber Bragg gratings, 2nd edn. (Academic Press, 2012)

    Google Scholar 

  15. S. Silva, P. Roriz, O. Frazão, Refractive index measurement of liquids based on microstructured optical fibers, in Photonics, vol. 1, No. 4 (Multidisciplinary Digital Publishing Institute, 2014), pp. 516–529

    Google Scholar 

  16. R. Jha, J. Villatoro, G. Badenes, V. Pruneri, Refractometry based on a photonic crystal fiber interferometer. Opt. Lett. 34(5), 617–619 (2009)

    Article  Google Scholar 

  17. J. Villatoro, M.P. Kreuzer, R. Jha, V.P. Minkovich, V. Finazzi, G. Badenes, V. Pruneri, Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 17(3), 1447–1453 (2009)

    Article  Google Scholar 

  18. K. Zhou, L. Zhang, X. Chen, I. Bennion, Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of > 80 tilted structures. Opt. Lett. 31(9), 1193–1195 (2006)

    Article  Google Scholar 

  19. Z. He, Y. Zhu, H. Du, Long-period gratings inscribed in air-and water-filled photonic crystal fiber for refractometric sensing of aqueous solution. Appl. Phys. Lett. 92(4), 4105 (2008)

    Article  Google Scholar 

  20. T. Wei, Y. Han, Y. Li, H.L. Tsai, H. Xiao, Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 16(8), 5764–5769 (2008)

    Article  Google Scholar 

  21. Y. Wang, M. Yang, D.N. Wang, S. Liu, P. Lu, Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. JOSA B 27(3), 370–374 (2010)

    Article  Google Scholar 

  22. Z. Tian, S.S. Yam, H.P. Loock, Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 33(10), 1105–1107 (2008)

    Article  Google Scholar 

  23. P. Lu, L. Men, K. Sooley, Q. Chen, Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 94(13), 131110 (2009)

    Article  Google Scholar 

  24. Y. Li, L. Chen, E. Harris, X. Bao, Double-pass in-line fiber taper Mach-Zehnder interferometer sensor. Photonics Technol. Lett. IEEE 22(23), 1750–1752 (2010)

    Article  Google Scholar 

  25. H.W. Lee, M.A. Schmidt, P. Uebel, H. Tyagi, N.Y. Joly, M. Scharrer, P.S.J. Russell, Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel. Opt. Express 19(9), 8200–8207 (2011)

    Article  Google Scholar 

  26. A. Zhou, Y. Zhang, G. Li, J. Yang, Y. Wang, F. Tian, L. Yuan, Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer. Opt. Lett. 36(16), 3221–3223 (2011)

    Article  Google Scholar 

  27. L. Men, P. Lu, Q. Chen, A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement. J. Appl. Phys. 103(5), 053107 (2008)

    Article  Google Scholar 

  28. L. Marrec, T. Bourgerette, E. Datin, N. Ferchaud, B. Pucel, L. Quetel, D. Tregoat, In-situ optical fibre sensors for temperature and salinity monitoring, in Oceans 2005-Europe vol. 2 (IEEE, 2005), pp. 1276–1278

    Google Scholar 

  29. J. Cong, X. Zhang, K. Chen, J. Xu, Fiber optic Bragg grating sensor based on hydrogels for measuring salinity. Sens. Actuators B: Chem. 87(3), 487–490 (2002)

    Article  Google Scholar 

  30. C. Wu, B.O. Guan, C. Lu, H.Y. Tam, Salinity sensor based on polyimide-coated photonic crystal fiber. Opt. Express 19(21), 20003–20008 (2011)

    Article  Google Scholar 

  31. H.A. Rahman, S.W. Harun, M. Yasin, H. Ahmad, Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror. IEEE J. Select. Topics Quantum Electr. 18(5), 1529–1533 (2012)

    Article  Google Scholar 

  32. Y. Zhao, X. Zhang, T. Zhao, B. Yuan, S. Zhang, Optical salinity sensor system based on fiber-optic array. Sens. J. IEEE 9(9), 1148–1153 (2009)

    Article  Google Scholar 

  33. L.V. Nguyen, M. Vasiliev, K. Alameh, Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater. Photonics Technol. Lett. IEEE 23(7), 450–452 (2011)

    Article  Google Scholar 

  34. S. Wang, J. Wang, G. Li, L. Tong, Modeling optical microfiber loops for seawater sensing. Appl. Opt. 51(15), 3017–3023 (2012)

    Article  Google Scholar 

  35. S. Robinson, R. Nakkeeran, Photonic crystal based sensor for sensing the salinity of seawater, in 2012 International Conference on Advances in Engineering, Science and Management (ICAESM) (IEEE, 2012), pp. 495–499

    Google Scholar 

  36. J.R. Guzman-Sepulveda, V.I. Ruiz-Perez, M. Torres-Cisneros, J.J. Sanchez-Mondragon, D.A. May-Arrioja, Fiber optic sensor for high-sensitivity salinity measurement. Photonics Technol. Lett. IEEE 25(23), 2323–2326 (2013)

    Article  Google Scholar 

  37. A.J. Rodríguez, C.R. Zamarreño, I.R. Matías, F.J. Arregui, R.F.D. Cruz, D.A. May-Arrioja, A fiber optic ammonia sensor using a universal pH indicator. Sensors 14(3), 4060–4073 (2014)

    Article  Google Scholar 

  38. A.R. Rodríguez, D.M. Camacho, K.G. Gutiérrez, D.A. May-Arrioja, R.D. Cruz, I.R.M. Maestro, C.R. Zamarreño, Rum adulteration detection using an optical fiber sensor based on multimodal interference (MMI). Optica pura y aplicada 46(4), 345–352 (2013)

    Article  Google Scholar 

  39. A.J.R. Rodríguez, O. Baldovino-Pantaleón, R.F.D. Cruz, C.R. Zamarreño, I.R. Matías, D.A. May-Arrioja, Gasohol quality control for real time applications by means of a multimode interference fiber sensor. Sensors 14(9), 17817–17828 (2014)

    Article  Google Scholar 

  40. M.A. Fuentes-Fuentes, D.A. May-Arrioja, J.R. Guzman-Sepulveda, M. Torres-Cisneros, J.J. Sánchez-Mondragón, Highly sensitive liquid core temperature sensor based on multimode interference effects. Sensors 15(10), 26929–26939 (2015)

    Article  Google Scholar 

  41. J. Jung, H. Nam, B. Lee, J.O. Byun, N.S. Kim, Fiber Bragg grating temperature sensor with controllable sensitivity. Appl. Opt. 38(13), 2752–2754 (1999)

    Article  Google Scholar 

  42. K.H. Smith, B.L. Ipson, T.L. Lowder, A.R. Hawkins, R.H. Selfridge, S.M. Schultz, Surface-relief fiber Bragg gratings for sensing applications. Appl. Opt. 45(8), 1669–1675 (2006)

    Article  Google Scholar 

  43. V.R. Mamidi, S. Kamineni, L.S.P. Ravinuthala, S.S. Madhuvarasu, V.R. Thumu, V.R. Pachava, P. Kishore, Fiber Bragg Grating-based high temperature sensor and its low cost interrogation system with enhanced resolution. Optica Applicata 44(2) (2014)

    Google Scholar 

  44. A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam, E.J. Friebele, Fiber grating sensors. J. Lightwave Technol. 15(8), 1442–1463 (1997)

    Article  Google Scholar 

  45. X. Shu, L. Zhang, I. Bennion, Sensitivity characteristics of long-period fiber gratings. J. Lightwave Technol. 20(2), 255 (2002)

    Article  Google Scholar 

  46. X. Chen, F. Shen, Z. Wang, Z. Huang, A. Wang, Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor. Appl. Opt. 45(30), 7760–7766 (2006)

    Article  Google Scholar 

  47. J. Zhang, Y. Zhang, W. Sun, L. Yuan, Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain. Meas. Sci. Technol. 20(6), 065206 (2009)

    Article  Google Scholar 

  48. Q. Li, C.H. Lin, P.Y. Tseng, H.P. Lee, Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor. Optics Commun. 250(4), 280–285 (2005)

    Article  Google Scholar 

  49. J. Ma, J. Ju, L. Jin, W. Jin, D. Wang, Fiber-tip micro-cavity for temperature and transverse load sensing. Opt. Express 19(13), 12418–12426 (2011)

    Article  Google Scholar 

  50. L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 36(19), 3753–3755 (2011)

    Article  Google Scholar 

  51. P. Hlubina, M. Kadulova, D. Ciprian, P. Mergo, Temperature sensing using the spectral interference of polarization modes in a highly birefringent fiber. Opt. Lasers Eng. 70, 51–56 (2015)

    Article  Google Scholar 

  52. P. Hu, Z. Chen, M. Yang, J. Yang, C. Zhong, Highly sensitive liquid-sealed multimode fiber interferometric temperature sensor. Sens. Actuators A 223, 114–118 (2015)

    Article  Google Scholar 

  53. G. Numata, N. Hayashi, M. Tabaru, Y. Mizuno, K. Nakamura, Strain and temperature sensing based on multimode interference in partially chlorinated polymer optical fibers. IEICE Electr. Express 12(2), 20141173 (2015)

    Article  Google Scholar 

  54. D. Monzón-Hernández, V.P. Minkovich, J. Villatoro, High-temperature sensing with tapers made of microstructured optical fiber. Photonics Technol. Lett. IEEE 18(3), 511–513 (2006)

    Article  Google Scholar 

  55. S.M. Nalawade, H.V. Thakur, Photonic crystal fiber strain-independent temperature sensing based on modal interferometer. Photonics Technol. Lett. IEEE 23(21), 1600–1602 (2011)

    Article  Google Scholar 

  56. E. Li, X.L. Wang, C. Zhang, Fiber-optic temperature sensor based on interference of selective higher-order modes (2006)

    Google Scholar 

  57. Y. Liu, L. Wei, Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Appl. Opt. 46(13), 2516–2519 (2007)

    Article  Google Scholar 

  58. Q. Wu, Y. Semenova, A.M. Hatta, P. Wang, G. Farrell, Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature. Microwave Opt. Technol. Lett. 53(9), 2181–2185 (2011)

    Article  Google Scholar 

  59. J.G. Aguilar-Soto, J.E. Antonio-Lopez, J.J. Sanchez-Mondragon, D.A. May-Arrioja, Fiber optic temperature sensor based on multimode interference effects, in Journal of Physics: Conference Series vol. 274, No. 1 (IOP Publishing, 2011), p. 012011

    Google Scholar 

  60. L.V. Nguyen, D. Hwang, S. Moon, D.S. Moon, Y. Chung, High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16(15), 11369–11375 (2008)

    Article  Google Scholar 

  61. P. Rugeland, W. Margulis, Revisiting twin-core fiber sensors for high-temperature measurements. Appl. Opt. 51(25), 6227–6232 (2012)

    Article  Google Scholar 

  62. J.E. Antonio-Lopez, Z.S. Eznaveh, P. LiKamWa, A. Schülzgen, R. Amezcua-Correa, Multicore fiber sensor for high-temperature applications up to 1000 C. Opt. Lett. 39(15), 4309–4312 (2014)

    Article  Google Scholar 

  63. Y.J. Rao, S. Huang, Ch. 10 “Applications of Fiber Optic Sensors,” in Fiber Optic Sensors, ed. by S.S. Yin, P. Ruffin (Wiley, 2002)

    Google Scholar 

  64. X. Wen, T. Ning, Y. Bai, C. Li, J. Li, C. Zhang, Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove. Opt. Express 23(9), 11526–11536 (2015)

    Article  Google Scholar 

  65. W. Qian, C.L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, H. Wei, High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Optics Lett. 36(9), 1548–1550 (2011)

    Google Scholar 

  66. H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Yan, Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber. Optics Lett. 38(7), 1071–1073 (2013)

    Google Scholar 

  67. W. Lin, Y. Miao, B. Song, H. Zhang, B. Liu, Y. Liu, D. Yan, Multimodal transmission property in a liquid-filled photonic crystal fiber. Optics Commun. 336, 14–19 (2015)

    Article  Google Scholar 

  68. W. Lin, B. Song, Y. Miao, H. Zhang, D. Yan, B. Liu, Y. Liu, Liquid-filled photonic-crystal-fiber-based multimodal interferometer for simultaneous measurement of temperature and force. Appl. Opt. 54(6), 1309–1313 (2015)

    Article  Google Scholar 

  69. E. Li, G.D. Peng, Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity. Optics Commun. 281(23), 5768–5770 (2008)

    Article  Google Scholar 

  70. I. Del Villar, A.B. Socorro, J. Corres, F. Arregui, I. Matias, Optimization of sensors based on multimode interference in single-mode–multimode–single-mode structure. J. Lightwave Technol. 31(22), 3460–3468 (2013)

    Article  Google Scholar 

  71. I. Del Villar, A.B. Socorro, J.M. Corres, F.J. Arregui, I.R. Matias, Refractometric sensors based on multimode interference in a thin-film coated single-mode–multimode–single-mode structure with reflection configuration. Appl. Opt. 53(18), 3913–3919 (2014)

    Article  Google Scholar 

  72. A.J.R. Rodríguez, O. Baldovino-Pantaleón, R.F.D. Cruz, C.R. Zamarreño, I.R. Matías, D.A. May-Arrioja, Gasohol quality control for real time applications by means of a multimode interference fiber sensor. Sensors 14(9), 17817–17828 (2014)

    Article  Google Scholar 

  73. A.B. Socorro, I. Del Villar, J.M. Corres, F.J. Arregui, I.R. Matias, Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: theoretical and experimental study. Sens. Actuators B: Chem. 190, 363–369 (2014)

    Article  Google Scholar 

  74. A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. Sens. J. IEEE 7(8), 1118–1129 (2007)

    Article  Google Scholar 

  75. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, C. Li, A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12(1), 015005 (2009)

    Article  Google Scholar 

  76. A. Dıez, M.V. Andres, J.L. Cruz, In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers. Sens. Actuators B Chem. 73(2), 95–99 (2001)

    Google Scholar 

  77. D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl. Opt. 43(6), 1216–1220 (2004)

    Article  Google Scholar 

  78. S. Yin, P.B. Ruffin, F.T.S. Yu, Fiber Optic Sensors, 2nd edn. (CRC Press, by Taylor & Francis Group, 2008) (Ch. 4 In-Fiber Grating Optic Sensors. Section 4.5.3 “Optic Bend Sensors”)

    Google Scholar 

  79. B.A.L. Gwandu, X.W. Shu, Y. Liu, W. Zhang, L. Zhang, I. Bennion, Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings. Sens. Actuators A 96(2), 133–139 (2002)

    Article  Google Scholar 

  80. Y.P. Wang, Y.J. Rao, A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously. Sens. J. IEEE 5(5), 839–843 (2005)

    Article  Google Scholar 

  81. L.Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W.J. Bock, J. Albert, Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating. Optics Commun. 283(13), 2690–2694 (2010)

    Article  Google Scholar 

  82. X. Chen, Y. Yu, X. Xu, Q. Huang, Z. Ou, J. Wang, C. Du, Temperature insensitive bending sensor based on in-line Mach-Zehnder interferometer. Photonic Sens. 4(3), 193–197 (2014)

    Google Scholar 

  83. B. Sun, X.Y. Li, Y.Y. Yu, K.P. He, Design of a low cost and high sensitivity sensor for curve measurement. Optik-Int. J. Light Electr. Opt. 127(1), 63–66 (2016)

    Article  Google Scholar 

  84. L. Renqiang, F. Zhuang, Z. Yanzheng, C. Qixin, W. Shuguo, Operation principle of a bend enhanced curvature optical fiber sensor, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2006), pp. 1966–1971

    Google Scholar 

  85. Y. Fu, H. Di, R. Liu, Light intensity modulation fiber-optic sensor for curvature measurement. Opt. Laser Technol. 42(4), 594–599 (2010)

    Article  Google Scholar 

  86. Y. Fu, H. Di, Fiber-optic curvature sensor with optimized sensitive zone. Opt. Laser Technol. 43(3), 586–591 (2011)

    Article  Google Scholar 

  87. B. Sun, X.Y. Li, Y.Y. Yu, K.P. He, Design of a low cost and high sensitivity sensor for curve measurement. Optik-Int. J. Light Electr. Opt. 127(1), 63–66 (2016)

    Article  Google Scholar 

  88. H. Fu, N. Zhao, M. Shao, H. Li, H. Gao, Q. Liu, X. Qiao, High-sensitivity Mach–Zehnder interferometric curvature fiber sensor based on thin-core fiber. Sens. J. IEEE 15(1), 520–525 (2015)

    Google Scholar 

  89. C.S. Shin, M.W. Lin, An optical fiber-based curvature sensor for endodontic files inside a tooth root canal. Sens. J. IEEE 10(6), 1061–1065 (2010)

    Article  Google Scholar 

  90. W. Liu, T. Guo, A.C.L. Wong, H.Y. Tam, S. He, Highly sensitive bending sensor based on Er 3 + -doped DBR fiber laser. Opt. Express 18(17), 17834–17840 (2010)

    Article  Google Scholar 

  91. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, R. Amezcua-Correa, Ultrasensitive vector bending sensor based on multicore optical fiber. Opt. Lett. 41(4), 832–835 (2016)

    Article  Google Scholar 

  92. J. Arkwright, P.L. Chu, T. Tjugiarto, Variable demultiplexing using a twin-core fiber Mach-Zehnder interferometer. Photonics Technol. Lett. IEEE 5(10), 1216–1218 (1993)

    Article  Google Scholar 

  93. J. Rathje, M. Svalgaard, J. Hubner, M. Kristensen, Sensitivity of a long-period optical fiber grating bend sensor, in Optical Fiber Communication Conference and Exhibit, 1998. OFC’98, Technical Digest (IEEE, 1998), pp. 238–239

    Google Scholar 

  94. M.J. Gander, W.N. MacPherson, R. McBride, J.D.C. Jones, L. Zhang, I. Bennion, A.H. Greenaway, Bend measurement using Bragg gratings in multicore fibre. Electr. Lett. 36(2), 120–121 (2000)

    Google Scholar 

  95. Y. Liu, J.A.R. Williams, I. Bennion, Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating. Photonics Technol. Lett. IEEE 12(5), 531–533 (2000)

    Article  Google Scholar 

  96. C.K. Leung, Fiber optic sensors in concrete: the future? NDT E Int. 34(2), 85–94 (2001)

    Article  Google Scholar 

  97. K. Lee, D.S. Kwon, Wearable master device using optical fiber curvature sensors for the disabled, in IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 1 (IEEE, 2001), pp. 892–896

    Google Scholar 

  98. C. Li, Y.M. Zhang, H. Liu, S. Wu, C.W. Huang, Distributed fiber-optic bi-directional strain–displacement sensor modulated by fiber bending loss. Sens. Actuators A 111(2), 236–239 (2004)

    Article  Google Scholar 

  99. H.N. Li, D.S. Li, G.B. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 26(11), 1647–1657 (2004)

    Article  Google Scholar 

  100. H. Dobb, K. Kalli, D.J. Webb, Temperature insensitive long-period grating sensors in photonic crystal fiber, in Photonics North (International Society for Optics and Photonics, 2004), pp. 66–79

    Google Scholar 

  101. K.M. Tan, C.C. Chan, S.C. Tjin, X.Y. Dong, Embedded long-period fiber grating bending sensor. Sens. Actuators A 125(2), 267–272 (2006)

    Article  Google Scholar 

  102. C.Y. Huang, W.C. Wang, W.J. Wu, W.R. Ledoux, Composite optical bend loss sensor for pressure and shear measurement. Sens. J. IEEE 7(11), 1554–1565 (2007)

    Article  Google Scholar 

  103. Y.X. Jin, C.C. Chan, X.Y. Dong, Y.F. Zhang, Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber. Optics Commun. 282(19), 3905–3907 (2009)

    Article  Google Scholar 

  104. O. Frazão, S.F.O. Silva, J. Viegas, J.M. Baptista, J.L. Santos, J. Kobelke, K. Schuster, All fiber Mach-Zehnder interferometer based on suspended twin-core fiber. IEEE Photonics Technol. Lett. 17(22), 1300–1302 (2010)

    Article  Google Scholar 

  105. S. Zhang, W. Zhang, S. Gao, P. Geng, X. Xue, Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper. Opt. Lett. 37(21), 4480–4482 (2012)

    Article  Google Scholar 

  106. J.R. Guzman-Sepulveda, D.A. May-Arrioja, In-fiber directional coupler for high-sensitivity curvature measurement. Opt. Express 21(10), 11853–11861 (2013)

    Article  Google Scholar 

  107. G. Salceda-Delgado, A. Van Newkirk, J.E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, R. Amezcua Correa, Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber. Opt. Lett. 40(7), 1468–1471 (2015)

    Article  Google Scholar 

  108. B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, J. Zhou, Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement. Opt. Express 23(11), 14596–14602 (2015)

    Google Scholar 

  109. A. Van Newkirk, J.E. Antonio-Lopez, A. Velazquez-Benitez, J. Albert, R. Amezcua-Correa, A. Schülzgen, Bending sensor combining multicore fiber with a mode-selective photonic lantern. Opt. Lett. 40(22), 5188–5191 (2015)

    Article  Google Scholar 

  110. Y. Yu, Y. Zhang, Z. Ou, X. Chen, Q. Huang, S. Ruan, Simultaneous measurement of one dimensional bending and temperature based on Mach-Zehnder interferometer. Photonic Sens. 5(4), 376–384 (2015)

    Article  Google Scholar 

  111. G. Capilla-Gonzalez et al., Stress homogenization in fiber optic bending sensors (submitted)

    Google Scholar 

Download references

Acknowledgments

José Rafael Guzmán-Sepúlveda acknowledges CONACyT for their support through a Ph.D. scholarship. Also, J.R.G.S. gratefully acknowledges fruitful discussions with Armando Pérez-Leija. The TCF and SCF were kindly provided by ACREO (Sweden) and the Microstructured Fibers and Devices Group at CREOL-UCF (USA), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. May-Arrioja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

May-Arrioja, D.A., Guzman-Sepulveda, J.R. (2017). Fiber Optic Sensors Based on Multicore Structures. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics