Skip to main content

Piezoelectric Ceramic Resonators (Resonance Frequency and Equivalent Electrical Circuit)

  • Chapter
  • First Online:
Piezoelectric Ceramic Resonators

Abstract

Piezoelectric ceramic resonators are discussed in details including calculation of impedance/admittance for each resonator type, resonance and antiresonance conditions and parameters of equivalent electronic circuit parameters. Resonators of bar, plate, disc and ring shape with various electrode pattern and poling directions are covered for all common one-dimensional as well as special vibration modes in detailed calculations. Some of the miscellaneous resonators (cylindrical or spherical shape) are reviewed from literature references. All resonators are demonstrated by experimental data of impedance spectra with identified and calculated vibration mode parameters. Example of higher order mode theory for coupled vibration is also given for reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman NT, Stavsky Y (1975) Vibrations of radially polarized composite piezoceramic cylinders and disks. J Sound Vib 43(1):37–44

    Article  Google Scholar 

  • Adelman NT, Stavsky Y (1977) Equivalent electrical circuit of a multielectrode composite piezoceramic bar. J Acoust Soc Am 61(2):422–427

    Article  Google Scholar 

  • Adelman NT, Stavsky Y, Segal E (1975a) Radial vibrations of axially polarized piezoelectric ceramic cylinders. J Acoust Soc Am 57(2):356–360

    Article  Google Scholar 

  • Adelman NT, Stavsky Y, Segal E (1975b) Axisymmetric vibrations of radially polarized piezoelectric ceramic cylinders. J Sound Vib 38(2):245–254

    Article  Google Scholar 

  • Ballato A (2001) Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks. IEEE Trans UFFC 48(5):1189–1240

    Article  Google Scholar 

  • Berlincourt DA, Curran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason WP (ed) Physical acoustics — principles and methods, vol 1 — A Methods and devices. Academic Press, New York, pp 169–270

    Google Scholar 

  • Ebenezer DD, Abraham P (1997) Eigenfunction analysis of radially polarized piezoelectric cylindrical shells of finite length. J Acoust Soc Am 102(3):1549–1558

    Article  Google Scholar 

  • Erhart J, Sebastian T (2015) Effective Electromechanical coupling for the partially electroded ceramic resonators of different geometries. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX. Metallurgy and Materials Science, vol XXXIII, no 2. pp 7–16

    Google Scholar 

  • Ghosh AK, Agrawal MK (1994) Radial vibrations of spheres. J Sound Vib 171(3):315–322

    Article  Google Scholar 

  • Graff KF (1991) Wave motion in elastic solids. Dover Publications, New York

    Google Scholar 

  • Haskins JF, Walsh JL (1957) Vibrations of ferroelectric cylindrical shells with transverse isotropy. I. Radially polarized case. J Acoust Soc Am 29(6):729–734

    Article  Google Scholar 

  • Holland R (1967a) Representation of dielectric, elastic and piezoelectric losses by complex coefficients. IEEE Trans Sonics Ultrason SU-14(1):18–20

    Google Scholar 

  • Holland R (1967b) The equivalent circuit of a symmetric N-electrode piezoelectric disk. IEEE Trans Sonics Ultrason SU-14(1):21–33

    Google Scholar 

  • Huang CH (2005) Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes. J Acoust Soc Am 118(2):751–761

    Article  Google Scholar 

  • Huang R, Lee PCY, Lin WS, Yu JD (2002) Extensional, thickness-stretch and symmetric thickness-shear vibrations of piezoceramic disks. IEEE Trans UFFC 49(11):1507–1515

    Article  Google Scholar 

  • Huang CH, Lin YC, Ma CC (2004) Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates. IEEE Trans UFFC 51(1):12–24

    Article  Google Scholar 

  • Huang N, Zhang R, Cao W (2007) Electromechanical coupling coefficient of 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal resonator with arbitrary aspect ratio. Appl Phys Lett 91:122903

    Article  Google Scholar 

  • Ivina NF (2001) Analysis of the natural vibrations of circular piezoceramic plates with partial electrodes. Acoust Phys 47(6):714–720

    Article  Google Scholar 

  • Karlash VL (1979) Nonsymmetric vibrations of piezoelectric ceramic rings polarized along the thickness. Int Appl Mech 14:1303–1308

    Google Scholar 

  • Karlash VL (2008) Resonant electromechanical vibrations of piezoelectric shells of revolution (Review). Int Appl Mech 44(4):361–387

    Article  Google Scholar 

  • Kim JO, Lee JG (2007) Dynamic characteristics of piezoelectric cylindrical transducers with radial polarization. J Sound Vib 300:241–249

    Google Scholar 

  • Kim JO, Hwang KK, Jeong HG (2004) Radial vibration characteristics of piezoelectric cylindrical transducers. J Sound Vib 276:1135–1144

    Google Scholar 

  • Kim M, Kim J, Cao W (2005a) Aspect ratio dependence of electromechanical coupling coefficient of piezoelectric resonators. Appl Phys Lett 87:132901

    Article  Google Scholar 

  • Kim JO, Lee JG, Chun HY (2005b) Radial vibration characteristics of spherical piezoelectric transducers. Ultrasonics 43(7):531–537

    Article  Google Scholar 

  • Kim M, Kim J, Cao W (2006a) Electromechanical coupling coefficient of an ultrasonic array element. J Appl Phys 99:074102

    Article  Google Scholar 

  • Kim M, Kim J, Cao W (2006b) Experimental technique for characterizing arbitrary aspect ratio piezoelectric resonators. Appl Phys Lett 89:162910

    Article  Google Scholar 

  • Kim H, Brockhaus A, Engemann J (2009) Atmospheric pressure argon plasma jet using a cylindrical piezoelectric transformer. Appl Phys Lett 95:211501

    Article  Google Scholar 

  • Lee PCY (1971) Extensional, flexural, and width-shear vibrations of thin rectangular crystal plates. J Appl Phys 42(11):4139–4144

    Article  Google Scholar 

  • Lee PCY, Edwards NP, Lin WS, Syngellakis S (2002) Second-order theories for extensional vibrations of piezoelectric crystal plates and strips. IEEE Trans UFFC 49(11):1497–1506

    Article  Google Scholar 

  • Lin S (2000) Thickness shearing vibration of the tangentially polarized piezoelectric ceramic thin circular ring. J Acoust Soc Am 107(5):2487–2492

    Article  Google Scholar 

  • Lin S (2004) Study on the equivalent circuit and coupled vibration for the longitudinally polarized piezoelectric ceramic hollow cylinders. J Sound Vib 275(3):859–875

    Article  Google Scholar 

  • Lin S, Zhang F (1993) Vibrational modes and frequency spectra in piezoelectric ceramic rectangular resonators. J Acoust Soc Am 94(5):2481–2484

    Article  Google Scholar 

  • Lin S, Fu Z, Zhang X, Wang Y, Hu J (2013) Radially sandwiched cylindrical piezoelectric transducer. Smart Mater Struct 22(1):015005

    Article  Google Scholar 

  • Mason WP (1948) Electrostrictive effect in barium titanate ceramics. Phys Rev 74(9):1134–1147

    Article  Google Scholar 

  • Meitzler AH, O’Brian HM, Tiersten HF (1973) Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson’s ratio. IEEE Trans Sonics Ultrason SU-20(3):233–239

    Google Scholar 

  • Mezheritsky AV (2003) Invariants of electromechanical coupling coefficients in piezoceramics. IEEE Trans UFFC 50(12):1742–1751

    Article  Google Scholar 

  • Mindlin RD (1976) Low frequency vibrations of elastic bars. Int J Solids Struct 12:27–49

    Article  Google Scholar 

  • Onoe M (1956) Contour vibrations of isotropic circular plates. J Acoust Soc Am 28(6):1158–1162

    Article  Google Scholar 

  • Onoe M, Jumonji H (1967) Useful formulas for piezoelectric ceramic resonators and their application to measurement of parameters. J Acoust Soc Am 41(4):974–980

    Article  Google Scholar 

  • Potter DS, Leedham CD (1971) Antisymmetric vibrations of a circular plate. J Acoust Soc Am 49(5B):1521–1526

    Article  Google Scholar 

  • Pustka M, Nosek J, Burianová L (2011) Coupled extensional vibrations of longitudinally polarized piezoceramic strips. IEEE Trans UFFC 58(10):2139–2145

    Article  Google Scholar 

  • Rogacheva NN (2001) The dependence of the electromechanical coupling coefficient of piezoelectric elements on the position and size of the electrodes. J Appl Math Mech 65(2):317–326

    Article  Google Scholar 

  • Sadd MH (2005) Elasticity: theory, applications, and numerics. Elsevier, Amsterdam

    Google Scholar 

  • Schwartz RW, Ballato J, Haertling GH (2004) Piezoelectric and electro-optic ceramics. In: Buchanan RC (ed) Ceramic materials for electronics, 3rd edn. Marcel-Dekker, New York, pp 207–322

    Google Scholar 

  • Stavsky Y, Greenberg JB (2003) Radial vibrations of orthotropic laminated hollow spheres. J Acoust Soc Am 113(2):847–851

    Article  Google Scholar 

  • Stefan O (1970) Contour vibrations of circular ceramic resonators. Czech J Phys A 20(2):113–122 (in Czech)

    Google Scholar 

  • Stephenson CV (1956) Radial vibrations in short, hollow cylinders of barium titanate. J Acoust Soc Am 28(1):51–56

    Article  Google Scholar 

  • Tasker R, Lukacs M, Sayer M, Sherrit S (1999) Techniques to determine the complex material constants of spherical and cylindrical ring resonators. In: IEEE Proceedings of Ultrasonic Symposium, pp 987–990

    Google Scholar 

  • Tiersten HF (1969) Linear piezoelectric plate vibrations. Plenum Press, New York

    Book  Google Scholar 

  • Uchino K, Zhuang Y, Ural SO (2011) Loss determination methodology for a piezoelectric ceramic: New phenomenological theory and experimental proposals. J Adv Diel 1(1):17–31

    Article  Google Scholar 

  • Wang J, Yang J (2000) Higher-order theories of piezoelectric plates and applications. Appl Mech Rev 53(4):87–99

    Article  Google Scholar 

  • Weisstein EW (2016) Lommel function. In: Mathworld — A Wolfram web resource. http://mathworld.wolfram.com/LommelFunction.html. Accessed 20 Apr 2016

  • Yang J (2006) The mechanics of piezoelectric structures. World Scientific, Singapore

    Google Scholar 

  • Zelenka J (1986) Piezoelectric resonators and their applications. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Erhart .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erhart, J., Půlpán, P., Pustka, M. (2017). Piezoelectric Ceramic Resonators (Resonance Frequency and Equivalent Electrical Circuit). In: Piezoelectric Ceramic Resonators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-42481-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42481-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42480-4

  • Online ISBN: 978-3-319-42481-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics