Skip to main content

Proteogenomic Analysis of Single Amino Acid Polymorphisms in Cancer Research

  • Chapter
  • First Online:
Proteogenomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 926))

Abstract

The integration of genomics and proteomics has led to the emergence of proteogenomics, a field of research successfully applied to the characterization of cancer samples. The diagnosis, prognosis and response to therapy of cancer patients will largely benefit from the identification of mutations present in their genome. The current state of the art of high throughput experiments for genome-wide detection of somatic mutations in cancer samples has allowed the development of projects such as the TCGA, in which hundreds of cancer genomes have been sequenced. This huge amount of data can be used to generate protein sequence databases in which each entry corresponds to a mutated peptide associated with certain cancer types. In this chapter, we describe a bioinformatics workflow for creating these databases and detecting mutated peptides in cancer samples from proteomic shotgun experiments. The performance of the proposed method has been evaluated using publicly available datasets from four cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., et al. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro, J. A., Sinha, A., Kislinger, T., et al. (2014). Onco-proteogenomics: Cancer proteomics joins forces with genomics. Nature Methods, 11(11), 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  • Ansong, C., Purvine, S. O., Adkins, J. N., et al. (2008). Proteogenomics: Needs and roles to be filled by proteomics in genome annotation. Briefings in Functional Genomics & Proteomics, 7(1), 50–62.

    Article  CAS  Google Scholar 

  • Chin, L., Andersen, J. N., & Futreal, P. A. (2011a). Cancer genomics: From discovery science to personalized medicine. Nature Medicine, 17(3), 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Chin, L., Hahn, W. C., Getz, G., et al. (2011b). Making sense of cancer genomic data. Genes & Development, 25(6), 534–555.

    Article  CAS  Google Scholar 

  • Ciriello, G., Miller, M. L., Aksoy, B. A., et al. (2013). Emerging landscape of oncogenic signatures across human cancers. Nature Genetics, 45(10), 1127–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero, F., Botta, M., & Calogero, R. A. (2007). Microarray data analysis and mining approaches. Briefings in Functional Genomics & Proteomics, 6(4), 265–281.

    Article  CAS  Google Scholar 

  • Desmedt, C., Sotiriou, C., & Piccart-Gebhart, M. J. (2009). Development and validation of gene expression profile signatures in early-stage breast cancer. Cancer Investigation, 27(1), 1–10.

    Article  PubMed  Google Scholar 

  • Eng, J. K., Jahan, T. A., & Hoopmann, M. R. (2013). Comet: An open-source MS/MS sequence database search tool. Proteomics, 13(1), 22–24.

    Article  CAS  PubMed  Google Scholar 

  • Evans, V. C., Barker, G., Heesom, K. J., et al. (2012). De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nature Methods, 9(12), 1207–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner, S., Dun, M. D., & Hondermarck, H. (2015). Proteogenomics: Emergence and promise. Cellular and Molecular Life Sciences, 72(5), 953–957.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, S. A., Beare, D., Gunasekaran, P., et al. (2015). COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43(Database issue), D805–D811.

    Article  PubMed  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Jumeau, F., Com, E., Lane, L., et al. (2015). Human spermatozoa as a model for detecting missing proteins in the context of the chromosome-centric Human Proteome Project. Journal of Proteome Research, 14(9), 3606–3620.

    Article  CAS  PubMed  Google Scholar 

  • Kandoth, C., McLellan, M. D., Vandin, F., et al. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502(7471), 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnov, G. S., Dmitriev, A. A., Kudryavtseva, A. V., et al. (2015). PPLine: An automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics. Journal of Proteome Research, 14(9), 3729–3737.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., Henikoff, S., & Pauline, C. N. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4(8), 1073–1082.

    Article  CAS  PubMed  Google Scholar 

  • Kurian, A. W., Hare, E. E., Mills, M. A., et al. (2014). Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. Journal of Clinical Oncology, 32(19), 2001–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

    Article  CAS  PubMed  Google Scholar 

  • Landrum, M. J., Lee, J. M., Riley, G. R., et al. (2014). ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research, 42(Database issue), D980–D985.

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen, I., Lopez, J., Skipper, L., et al. (2013). DbVar and DGVa: Public archives for genomic structural variation. Nucleic Acids Research, 41(Database issue), D936–D941.

    Article  CAS  PubMed  Google Scholar 

  • Legrain, P., Aebersold, R., Archakov, A., et al. (2011). The human proteome project: Current state and future direction. Molecular and Cellular Proteomics, 10(7), M111.009993.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott, U., Downing, J. R., & Stratton, M. R. (2011). Genomics and the continuum of cancer care. New England Journal of Medicine, 364(4), 340–350.

    Article  CAS  PubMed  Google Scholar 

  • McLaren, W., Pritchard, B., Rios, D., et al. (2010). Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics, 26(16), 2069–2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerson, M., Gabriel, S., & Getz, G. (2010). Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews Genetics, 11(10), 685–696.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj, N., Wisniewski, J. R., Geiger, T., et al. (2011). Deep proteome and transcriptome mapping of a human cancer cell line. Molecular Systems Biology, 7, 548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagaraj, S. H., Waddell, N., Madugundu, A. K., et al. (2015). PGTools: A software suite for proteogenomic data analysis and visualization. Journal of Proteome Research, 14(5), 2255–2266.

    Article  CAS  PubMed  Google Scholar 

  • Nesvizhskii, A. I. (2014). Proteogenomics: Concepts, applications and computational strategies. Nature Methods, 11(11), 1114–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabinger, S., Dander, A., Fischer, M., et al. (2014). A survey of tools for variant analysis of next-generation genome sequencing data. Briefings in Bioinformatics, 15(2), 256–278.

    Article  PubMed  Google Scholar 

  • Paik, Y. K., & Hancock, W. S. (2012). Uniting ENCODE with genome-wide proteomics. Nature Biotechnology, 30(11), 1065–1067.

    Article  CAS  PubMed  Google Scholar 

  • Prieto, G., Aloria, K., Osinalde, N., et al. (2012). PAnalyzer: A software tool for protein inference in shotgun proteomics. BMC Bioinformatics, 13, 288.

    Article  PubMed  PubMed Central  Google Scholar 

  • ENCODE Project Consortium, Bernstein, B. E., Birney, E., et al. (2011). A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biology, 9(4), e1001046.

    Article  Google Scholar 

  • Reiter, L., Claassen, M., Schrimpf, S. P., et al. (2009). Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Molecular and Cellular Proteomics, 8(11), 2405–2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura, V., Medina-Aunon, J. A., Mora, M. I., et al. (2014). Surfing transcriptomic landscapes. A step beyond the annotation of chromosome 16 proteome. Journal of Proteome Research, 13(1), 158–172.

    Article  CAS  PubMed  Google Scholar 

  • Smigielski, E. M., Sirotkin, K., Ward, M., et al. (2000). dbSNP: A database of single nucleotide polymorphisms. Nucleic Acids Research, 28(1), 352–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiriou, C., & Pusztai, L. (2009). Gene-expression signatures in breast cancer. New England Journal of Medicine, 360(8), 790–800.

    Article  CAS  PubMed  Google Scholar 

  • Tabas-Madrid, D., Alves-Cruzeiro, J., Segura, V., et al. (2015). Proteogenomics dashboard for the Human Proteome Project. Journal of Proteome Research, 14(9), 3738–3749.

    Article  CAS  PubMed  Google Scholar 

  • Tamborero, D., Gonzalez-Perez, A., Perez-Llamas, C., et al. (2013). Comprehensive identification of mutational cancer driver genes across 12 tumor types. Science Reports, 3, 2650.

    Google Scholar 

  • Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemporary Oncology (Pozn), 19(1A), A68–A77.

    Google Scholar 

  • Trapnell, C., Hendrickson, D. G., Sauvageau, M., et al. (2013). Differential analysis of gene regulation at transcript resolution with RNA-Seq. Nature Biotechnology, 31(1), 46–53.

    Article  CAS  PubMed  Google Scholar 

  • Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno, J. A., Côté, R. G., Csordas, A., et al. (2013). The PRoteomics IDEntifications (PRIDE) database and associated tools: Status in 2013. Nucleic Acids Research, 41(Database issue), D1063–D1069.

    Article  PubMed  Google Scholar 

  • Wang, X., & Zhang, B. (2013). customProDB: An R package to generate customized protein databases from RNA-Seq data for proteomics search. Bioinformatics, 29(24), 3235–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, S., Cha, S. W., Na, S., et al. (2014). Proteogenomic strategies for identification of aberrant cancer peptides using large-scale next-generation sequencing data. Proteomics, 14(23–24), 2719–2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., & Lazar, I. M. (2014). XMAn: A Homo sapiens mutated-peptide database for the MS analysis of cancerous cell states. Journal of Proteome Research, 13(12), 5486–5495.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Wang, J., Wang, X., et al. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature, 513(7518), 382–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All participating laboratories are members of ProteoRed-ISCIII. This work was supported by: Carlos III Health Institute of Spain (ISCIII, FIS PI11/02114 and FIS PI14/01538)-Fondos FEDER (EU); grants SAF2014-5478-R from Ministerio de Economía y Competitividad. The CIMA Proteomics Unit belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001 L We also thank the Proteomics, Genomics and Bioinformatics Core Facility of CIMA, especially to Elizabeth Guruceaga, María Mora and Leticia Odriozola for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Segura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garin-Muga, A., Corrales, F.J., Segura, V. (2016). Proteogenomic Analysis of Single Amino Acid Polymorphisms in Cancer Research. In: Végvári, Á. (eds) Proteogenomics. Advances in Experimental Medicine and Biology, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-319-42316-6_7

Download citation

Publish with us

Policies and ethics