Skip to main content

Proteogenomics for the Comprehensive Analysis of Human Cellular and Serum Antibody Repertoires

  • Chapter
  • First Online:
Proteogenomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 926))

Abstract

The vast repertoire of immunoglobulins produced by the immune system is a consequence of the huge amount of antigens to which we are exposed every day. The diversity of these immunoglobulins is due to different mechanisms (including VDJ recombination, somatic hypermutation, and antigen selection). Understanding how the immune system is capable of generating this diversity and which are the molecular bases of the composition of immunoglobulins are key challenges in the immunological field. During the last decades, several techniques have emerged as promising strategies to achieve these goals, but it is their combination which appears to be the fruitful solution for increasing the knowledge about human cellular and serum antibody repertoires.

In this chapter, we address the diverse strategies focused on the analysis of immunoglobulin repertoires as well as the characterization of the genomic and peptide sequences. Moreover, the advantages of combining various –omics approaches are discussed through review different published studies, showing the benefits in clinical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bandeira, N., et al. (2008). Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology, 26(12), 1336–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellana, N., & Bafna, V. (2010). Proteogenomics to discover the full coding content of genomes: A computational perspective. Journal of Proteomics, 73(11), 2124–2135. Available at: http://dx.doi.org/10.1016/j.jprot.2010.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellana, N. E., et al. (2011). Resurrection of a clinical antibody: Template proteogenomic de novo proteomic sequencing and reverse engineering of an anti-lymphotoxin-alpha antibody. Proteomics, 11(3), 395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen, M., et al. (2007). Chapter 4: Maritime transportation. In Handbooks in operations research and management science, 14(C) (pp. 189–284). Amsterdam: Elsevier.

    Google Scholar 

  • Díez, P., et al. (2015). Integration of Proteomics and Transcriptomics data sets for the analysis of B-cell lymphoma cell line in the context of the Chromosome-Centric Human Proteome Project. J. Proteome Res. 14(9):3530–40.

    Google Scholar 

  • de Groot, A., et al. (2014). RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biology and Evolution, 6(4), 932–948.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elias, J. E., & Gygi, S. P. (2010). Target-decoy search strategy for mass spectrometry-based proteomics. Methods in Molecular Biology (Clifton, NJ), 604(2), 55–71.

    Article  CAS  Google Scholar 

  • Fanayan, S., et al. (2013). Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405. Journal of Proteome Research, 12, 1732–1742.

    Article  CAS  PubMed  Google Scholar 

  • Faulkner, S., Dun, M. D., & Hondermarck, H. (2015). Proteogenomics: Emergence and promise. Cellular and Molecular Life Sciences, 72(5), 953–957. Available at: http://link.springer.com/10.1007/s00018-015-1837-y.

    Article  CAS  PubMed  Google Scholar 

  • Fullwood, M. J., et al. (2009). Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Research, 19(4), 521–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günther, O. P., et al. (2014). Novel multivariate methods for integration of genomics and proteomics data: Applications in a kidney transplant rejection study. Omics: A Journal of Integrative Biology, 18(11), 682–695.

    Article  PubMed  Google Scholar 

  • Haider, S., & Pal, R. (2013). Integrated analysis of transcriptomic and proteomic data. Current Genomics, 14(2), 91–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heck, A. J. R. (2008). Native mass spectrometry: A bridge between interactomics and structural biology. Nature Methods, 5(11), 927–933.

    Article  CAS  PubMed  Google Scholar 

  • Hert, D. G., Fredlake, C. P., & Barron, A. E. (2008). Advantages and limitations of next-generation sequencing technologies: A comparison of electrophoresis and non-electrophoresis methods. Electrophoresis, 29, 4618–4626.

    Article  CAS  PubMed  Google Scholar 

  • Hozumi, N., & Tonegawa, S. (1976). Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proceedings of the National Academy of Sciences of the United States of America, 73(10), 3628–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, C., Ma, B., & Lajoie, G. A. (2010). De novo sequencing methods in proteomics. Methods in Molecular Biology (Clifton, NJ), 604, 105–121.

    Article  CAS  Google Scholar 

  • Jordan, M. A., & Baxter, A. G. (2008). Quantitative and qualitative approaches to GOD: The first 10 years of the clonal selection theory. Immunology and Cell Biology, 86(1), 72–9.

    Article  PubMed  Google Scholar 

  • Kostareli, E., et al. (2012). Immunoglobulin gene repertoire in chronic lymphocytic leukemia: Insight into antigen selection and microenvironmental interactions. Mediterranean Journal of Hematology and Infectious Diseases, 4(1), e2012052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavinder, J. J., et al. (2015). Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Current Opinion in Chemical Biology, 24, 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Lefranc, M.-P., et al. (2015). IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Research, 43(Database issue), D413–D422.

    Article  PubMed  Google Scholar 

  • Li, Z., et al. (2004). The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes and Development, 18(1), 1–11.

    Article  PubMed  Google Scholar 

  • Lomakin, Y. a., et al. (2014). Heavy-light chain interrelations of MS-associated immunoglobulins probed by deep sequencing and rational variation. Molecular Immunology, 62(2), 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen, K., et al. (2007). Structural biology of RNA polymerase III: Mass spectrometry elucidates subcomplex architecture. Structure (London, England: 1993), 15(10), 1237–1245.

    Article  CAS  Google Scholar 

  • Mathé, C., et al. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Research, 30(19), 4103–4117.

    Article  PubMed  PubMed Central  Google Scholar 

  • McRedmond, J. P., et al. (2004). Integration of proteomics and genomics in platelets: A profile of platelet proteins and platelet-specific genes. Molecular & Cellular Proteomics, 3(2), 133–144.

    Article  CAS  Google Scholar 

  • Nesvizhskii, A. I. (2014). Proteogenomics: Concepts, applications and computational strategies. Nature Methods, 11(11), 1114–1125. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4392723&tool=pmcentrez&rendertype=abstract.

  • Pham, V., et al. (2006). De novo proteomic sequencing of a monoclonal antibody raised against OX40 ligand. Analytical Biochemistry, 352(1), 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Ralph, D., & Matsen, F. A. (2015). Consistency of VDJ rearrangement and substitution parameters enables accurate B cell receptor sequence annotation, arXiv(q-bio.PE),1–40.

    Google Scholar 

  • Reiter, L., et al. (2009). Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Molecular & Cellular Proteomics, 8(11), 2405–2417.

    Article  CAS  Google Scholar 

  • Resemann, A., et al. (2010). Top-down de novo protein sequencing of a 13.6 kDa camelid single heavy chain antibody by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry. Analytical Chemistry, 82(8), 3283–3292.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, A., et al. (2011). Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27(17), 2325–2329.

    Article  CAS  PubMed  Google Scholar 

  • Rosati, S., et al. (2012). Exploring an orbitrap analyzer for the characterization of intact antibodies by native mass spectrometry. Angewandte Chemie – International Edition, 51(52), 12992–12996.

    Article  CAS  Google Scholar 

  • Schroeder, H. W., & Cavacini, L. (2013). Structure and function of immunoglobulins. Journal Allergy Clinical Immunology, 125(125), S41–S52.

    Google Scholar 

  • Teh, S.-L., et al. (2011). Development of expressed sequence tag resources for Vanda Mimi Palmer and data mining for EST-SSR. Molecular Biology Reports, 38(6), 3903–3909.

    Article  CAS  PubMed  Google Scholar 

  • van Duijn, E. (2010). Current limitations in native mass spectrometry based structural biology. Journal of the American Society for Mass Spectrometry, 21(6), 971–978.

    Article  PubMed  Google Scholar 

  • Winnenburg, R., et al. (2008). PHI-base update: Additions to the pathogen – Host interaction database. Database, 36(October 2007), 572–576.

    Google Scholar 

  • Woo, S., et al. (2014). Proteogenomic database construction driven from large scale RNA-Seq data. Journal of Proteome Research, 13(1), 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Ye, X., Blonder, J., & Veenstra, T. D. (2009). Targeted proteomics for validation of biomarkers in clinical samples. Briefings in Functional Genomics & Proteomics, 8(2), 126–135.

    Article  CAS  Google Scholar 

  • Zhang, B., et al. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature, 513(7518), 382–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., et al. (2015). Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Experimental Neurology, 277, 162–170.

    Article  PubMed  Google Scholar 

  • Zhu, W., Lomsadze, A., & Borodovsky, M. (2010). Ab initio gene identification in metagenomic sequences. Nucleic Acids Research, 38(12), 1–15.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Carlos III Health Institute of Spain (ISCIII, FIS PI11/02114, FIS PI14/01538), Fondos FEDER (EU) and Junta Castilla-León. BIO/SA07/15; Fundación Samuel Solórzano FS/23-2015. The Proteomics Unit belongs to ProteoRed, PRB2-ISCIII, FONDOS FEDER, supported by grant PT13/0001. P.D. is supported by a JCYL-EDU/346/2013 Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díez, P., Fuentes, M. (2016). Proteogenomics for the Comprehensive Analysis of Human Cellular and Serum Antibody Repertoires. In: Végvári, Á. (eds) Proteogenomics. Advances in Experimental Medicine and Biology, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-319-42316-6_10

Download citation

Publish with us

Policies and ethics