Skip to main content

Enhancement of Chiral Fields by Geometrically Chiral Structures

  • Chapter
  • First Online:
Chiral Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 205))

  • 2285 Accesses

Abstract

It is expected that geometrically chiral plasmonic nanostructures can enhance the intrinsic optical chirality of circularly polarized light. Therefore, we analyze the chiral near-field response of different chiral nanostructures illuminated with circularly polarized light in this chapter. We show that properly designed planar geometrically chiral nanostructures can result in a natural spatial separation of chiral near-fields with opposite handedness. Three-dimensional geometrically chiral nanostructures, on the other hand, interact strongest with one preferred handedness of the incident light and can lead to chiral hot-spots, where particularly high optical chirality occurs. Based on these findings, we provide basic design principles for chiral plasmonic near-field sources based on geometrically chiral nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will show in Sect. 8.2 that this small enhancement is not an intrinsic problem of the helix but is due to the wrong excitation of its resonance.

  2. 2.

    A plot of this chiroptical far-field response can be seen in Fig. 2.14 where the same geometry parameters have been used.

  3. 3.

    This analysis is not shown in Fig. 5.6. However, the design is rediscovered in Sect. 6.3. A plot of \(\Delta \hat{C}\) is shown in Fig. 6.4 in this section.

  4. 4.

    This example shows once more that handedness definitions are rather arbitrary and do not lead to a deeper understanding of the discussed structure. Additional information beyond the handednesses of the constituents is necessary to analyze and describe chiral plasmonic systems properly.

References

  1. L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  2. S. Takahashi, A. Potts, D. Bagnall, N. Zheludev, A. Zayats, Near-field polarization conversion in planar chiral nanostructures. Opt. Commun. 255, 91 (2005)

    Article  ADS  Google Scholar 

  3. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, M. Kuwata-Gonokami, Circularly polarized light emission from semiconductor planar chiral nanostructures. Phys. Rev. Lett. 106, 057402 (2011)

    Article  ADS  Google Scholar 

  4. E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783 (2010)

    Article  ADS  Google Scholar 

  5. J.K. Gansel, M. Wegener, S. Burger, S. Linden, Gold helix photonic metamaterials: a numerical parameter study. Opt. Express 18, 1059 (2010)

    Article  ADS  Google Scholar 

  6. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31 (2008)

    Article  ADS  Google Scholar 

  7. N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamaterials. Nat. Photon. 3, 157 (2009)

    Article  ADS  Google Scholar 

  8. H. Liu, J.X. Cao, S.N. Zhu, N. Liu, R. Ameling, H. Giessen, Lagrange model for the chiral optical properties of stereometamaterials. Phys. Rev. B 81, 241403 (2010)

    Article  ADS  Google Scholar 

  9. D.A. Powell, K. Hannam, I.V. Shadrivov, Y.S. Kivshar, Near-field interaction of twisted split-ring resonators. Phys. Rev. B 83, 235420 (2011)

    Article  ADS  Google Scholar 

  10. M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schäferling .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schäferling, M. (2017). Enhancement of Chiral Fields by Geometrically Chiral Structures. In: Chiral Nanophotonics. Springer Series in Optical Sciences, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-42264-0_5

Download citation

Publish with us

Policies and ethics