Skip to main content

Chiral Properties of Light

  • Chapter
  • First Online:
Chiral Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 205))

  • 2390 Accesses

Abstract

Not only physical objects, but also electromagnetic fields can exhibit chiral properties. This chiral nature of light leads to chiral interactions between such fields and chiral media. The results of these interactions depend on the mutual handedness of the field and the medium. Therefore, such interactions are the basis of chiroptical spectroscopy. In this chapter, we introduce optical chirality as a measure for the chiral interaction strength of electromagnetic fields. For this purpose, we derive the excitation rate of a chiral molecule in dependence of the optical chirality of the external electromagnetic field. Subsequently, we analyze the optical chirality of different field distributions and introduce the concept of chiral plasmonic near-field sources, which are metallic nanostructures designed to provide strong optical chirality in their near-fields. Additional design criteria that should be fulfilled by the near-field distribution occur, if these near-field sources are intended for highly sensitive enantiomer discrimination. Furthermore, we motivate that not only the nanostructure, but also the illumination must be considered to characterize a chiral plasmonic near-field source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some literature, “optical chirality” is used for chiroptical far-field effects (mostly, CD). In this book, it always refers to the quantity defined via (4.1).

  2. 2.

    Note that this is consistent with the signs of the Jones vectors for CPL in the detector’s view convention.

  3. 3.

    Similar considerations can be made for spherical waves . In this case, OC additionally scales with the radius r, similar to the intensity of the wave.

  4. 4.

    We will discuss the chiroptical near-field response of the gammadion in more detail in Sect. 5.1.1.

References

  1. Y. Tang, A.E. Cohen, Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010)

    Article  ADS  Google Scholar 

  2. D.M. Lipkin, Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 5, 696 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley-VCH, New York, 1998)

    MATH  Google Scholar 

  4. G. Nienhuis, Conservation laws and symmetry transformations of the electromagnetic field with sources. Phys. Rev. A 93, 023840 (2016)

    Article  ADS  Google Scholar 

  5. L.V. Poulikakos, P. Gutsche, K.M. McPeak, S. Burger, J. Niegemann, C. Hafner, D.J. Norris, Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photon. 3, 1619 (2016)

    Google Scholar 

  6. K. Bliokh, F. Nori, Characterizing optical chirality. Phys. Rev. A 83, 021803 (2011)

    Article  ADS  Google Scholar 

  7. M.M. Coles, D.L. Andrews, Chirality and angular momentum in optical radiation. Phys. Rev. A 85, 063810 (2012)

    Article  ADS  Google Scholar 

  8. T.G. Philbin, Lipkin’s conservation law, Noether’s theorem, and the relation to optical helicity. Phys. Rev. A 87, 043843 (2013)

    Article  ADS  Google Scholar 

  9. S.M. Barnett, R.P. Cameron, A.M. Yao, Duplex symmetry and its relation to the conservation of optical helicity. Phys. Rev. A 86, 013845 (2012)

    Article  ADS  Google Scholar 

  10. R.P. Cameron, S.M. Barnett, A.M. Yao, Optical helicity of interfering waves. J. Mod. Opt. 61, 25 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. J.S. Choi, M. Cho, Limitations of a superchiral field. Phys. Rev. A 86, 063834 (2012)

    Article  ADS  Google Scholar 

  12. R.A. Harris, On the optical rotary dispersion of polymers. J. Chem. Phys. 43, 959 (1965)

    Article  ADS  Google Scholar 

  13. L.D. Barron, Molecular Light Scattering and Optical Activity, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  14. D.P. Craig, T. Thirunamachandran, New approaches to chiral discrimination in coupling between molecules. Theor. Chem. Acc. 102, 112 (1999)

    Article  Google Scholar 

  15. A.G. Smart, A mirror gives light an extra twist. Phys. Today 64, 16 (2011)

    MathSciNet  Google Scholar 

  16. Y. Tang, A.E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333 (2011)

    Article  ADS  Google Scholar 

  17. N. Yang, A.E. Cohen, Local geometry of electromagnetic fields and its role in molecular multipole transitions. J. Phys. Chem. B 115, 5304 (2011)

    Article  Google Scholar 

  18. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  19. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  20. A. Canaguier-Durand, J.A. Hutchison, C. Genet, T.W. Ebbesen, Mechanical separation of chiral dipoles by chiral light. New J. Phys. 15, 123037 (2013)

    Article  ADS  Google Scholar 

  21. R.P. Cameron, S.M. Barnett, A.M. Yao, Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014)

    Article  ADS  Google Scholar 

  22. K. Ding, J. Ng, L. Zhou, C.T. Chan, Realization of optical pulling forces using chirality. Phys. Rev. A 89, 063825 (2014)

    Article  ADS  Google Scholar 

  23. C. Rosales-Guzmán, K. Volke-Sepulveda, J.P. Torres, Light with enhanced optical chirality. Opt. Lett. 37, 3486 (2012)

    Article  ADS  Google Scholar 

  24. E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783 (2010)

    Article  ADS  Google Scholar 

  25. M.H. Alizadeh, B.M. Reinhard, Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators. ACS Photon 2, 361 (2015)

    Article  Google Scholar 

  26. E. Hendry, R.V. Mikhaylovskiy, L.D. Barron, M. Kadodwala, T.J. Davis, Chiral electromagnetic fields generated by arrays of nanoslits. Nano Lett. 12, 3640 (2012)

    Article  ADS  Google Scholar 

  27. N. Meinzer, E. Hendry, W.L. Barnes, Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Phys. Rev. B 88, 041407 (2013)

    Article  ADS  Google Scholar 

  28. A.M. Kern, O.J.F. Martin, Excitation and reemission of molecules near realistic plasmonic nanostructures. Nano Lett. 11, 482 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schäferling .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schäferling, M. (2017). Chiral Properties of Light. In: Chiral Nanophotonics. Springer Series in Optical Sciences, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-42264-0_4

Download citation

Publish with us

Policies and ethics