Skip to main content

Chirality in Nature and Science

  • Chapter
  • First Online:
Chiral Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 205))

Abstract

Geometrical chirality in molecules or plasmonic nanostructures can lead to unique optical responses such as circular dichroism or optical rotatory dispersion. It is important to distinguish between such chiral responses and the underlying chiral geometry. In this chapter, we first discuss the geometrical properties of chiral objects from a mathematical point of view including planar chirality, the quantification of chirality, and different handedness definitions. After a short introduction to localized plasmons, we thoroughly derive the electromagnetic properties of geometrically chiral objects. Starting from the Born-Kuhn model for chiral media, we derive the chiral constitutive equations and, subsequently, the chiral wave equation. This wave equation provides the basis for a theoretical discussion of the resulting chiral far-field responses. Exemplary, we analyze the circular dichroism response of sugars and simple plasmonic nanostructures. Additionally, a short review of modern techniques for the fabrication of chiral plasmonic nanostructures is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will adopt this nomenclature and also speak of enantiomers in case of chiral plasmonic structures. This is common usage in recent literature and also fits to the concept of “plasmonic molecules” [2].

  2. 2.

    Note that it is possible to observe chiral responses for structures that are achiral from a geometrical point of view. This can, for example, occur when the combination of structure and incident wave vector form a chiral object. In some literature, such an arrangement is referred to as possessing “extrinsic chirality” [5].

  3. 3.

    One could also argue that, to resort this problem, both helices in the example must have the same handedness. However, it is straightforward to extend the transformation scheme to transform the structure back into the enantiomorph of the initial helix. Those two must have opposite sign in any useful handedness measure.

  4. 4.

    Additionally, tensors can change their sign in a continuous transformation without crossing zero.

  5. 5.

    Note that the shapes of the keys are not the same as the shapes of the keyholes. This is not necessary to obtain a different response depending on the handedness of the key-hole, only the geometrical chirality is important.

  6. 6.

    Key and keyhole in this example are only planar geometrically chiral. However, it is straight-forward to extend this example to three-dimensional geometrically chiral objects. The planar example has been chosen because it is easier to visualize.

  7. 7.

    Strictly speaking, this is not true. Theoretical quantum chemistry predicts a small energy difference between two enantiomers because of the parity violation of the weak interaction [13, 14]. However, this difference is so small that it could not be measured by now [15, 16].

  8. 8.

    This can be intuitively understood as follows: The rotation in a plane is a planar geometrically chiral system . Depending on the convention, we look from opposite sides on this system, which changes its handedness.

  9. 9.

    In principle, this additionally depends on the handedness of the coordinate system . Usually, a right-handed coordinate system is used.

  10. 10.

    It has been shown that the material properties of metal clusters are similar to those of bulk metals down to cluster sizes of a few nanometers [28]. Therefore, the same Drude parameters as for bulk metals can be used.

  11. 11.

    In general, the term “bi-isotropic medium” comprises a wider class of materials with more general constitutive equations (cf. [47]). They are all characterized by two orthogonal eigenpolarizations with opposite handedness.

  12. 12.

    In chemistry, the differential molar extinction coefficient is often used instead of the differential absorbance. This quantity describes the chiroptical properties of a chiral molecule independent of external influences such as path length or concentration (cf. Appendix A).

  13. 13.

    The following parameters have been used: \({\omega _0 = {500}\,\text {THz}}\), \({\omega _\text {p} = {50}\,\mathrm{{THz}}}\), \({\gamma ={5}\,\mathrm{{THz}}}\), \({\omega _\text {c} = {2.5}\,\mathrm{{THz}}}\) and \({d={1}\,\text {nm}}\). The path length \({l={2}\,{\upmu \text {m}}}\) has been chosen such that strong absorption on resonance is obtained. Therefore, the absorption per unit length is much stronger than for most natural chiral materials.

  14. 14.

    Strictly speaking, only l-glucose and d-galactose are diastereomers. d-glucose and d-galactose, who differ in exactly one chiral center , are called epimers .

  15. 15.

    In this figure, \(\Delta \epsilon \) is the molar differential extinction coefficient. Please refer to Appendix A for an explanation of the different units used in CD spectroscopy.

  16. 16.

    For most plasmonic systems, we show the transmittance difference \(\Delta T\) instead of \(\Delta A\). Both responses contain equivalent information as long as no differential reflectance occurs (cf. Appendix A).

  17. 17.

    In the detector’s view convention , LCP rotates to the left while RCP rotates to the right. Therefore, such analysis can be performed rather intuitively in the chosen convention.

  18. 18.

    Note that the fabrication method does not allow for \(C_3\) or \(C_4\) symmetry. However, the structure has been measured from both sides to eliminate the influence of circular conversion dichroism, which exhibits opposite sign for backward illumination.

References

  1. W.T. Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (CJ Clay and Sons, London, 1904)

    MATH  Google Scholar 

  2. H. Wang, D.W. Brandl, P. Nordlander, N.J. Halas, Plasmonic nanostructures: artificial molecules. Acc. Chem. Res. 40, 53 (2007)

    Article  Google Scholar 

  3. L.D. Barron, Molecular Light Scattering and Optical Activity, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  4. E. Ruch, Algebraic aspects of the chirality phenomenon in chemistry. Acc. Chem. Res. 5, 49 (1972)

    Article  Google Scholar 

  5. E. Plum, V.A. Fedotov, N.I. Zheludev, Extrinsic electromagnetic chirality in metamaterials. J. Opt. A Pure Appl. Opt. 11, 074009 (2009)

    Article  ADS  Google Scholar 

  6. M. Petitjean, Chirality and symmetry measures: a transdisciplinary review. Entropy 5, 271 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. P.W. Fowler, Quantification of chirality: attempting the impossible. Symmetry Cult. Sci. 16, 321 (2005)

    MathSciNet  Google Scholar 

  8. A. Rassat, P.W. Fowler, Any scalene triangle is the most chiral triangle. Helv. Chim. Acta 86, 1728 (2003)

    Article  Google Scholar 

  9. A. Rassat, P.W. Fowler, Is there a “most chiral tetrahedron”? Chemistry 10, 6575 (2004)

    Article  Google Scholar 

  10. P.G. Mezey, Rules on chiral and achiral molecular transformations. II. J. Math. Chem. 18, 133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Efrati, W. Irvine, Orientation-dependent handedness and chiral design. Phys. Rev. X 4, 011003 (2014)

    Google Scholar 

  12. R. Schreiber, N. Luong, Z. Fan, A. Kuzyk, P.C. Nickels, T. Zhang, D.M. Smith, B. Yurke, W. Kuang, A.O. Govorov, T. Liedl, Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013)

    Article  ADS  Google Scholar 

  13. C.S. Wu, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957)

    Article  ADS  Google Scholar 

  14. S.L. Nahrwold, Electroweak quantum chemistry: Parity violation in spectra of chiral molecules containing heavy atoms. Ph.D. thesis, Johann Wolfgang Goethe-Universität Frankfurt (2010)

    Google Scholar 

  15. M. Quack, J. Stohner, M. Willeke, High-resolution spectroscopic studies and theory of parity violation in chiral molecules. Annu. Rev. Phys. Chem. 59, 741 (2008)

    Article  ADS  Google Scholar 

  16. B. Darquié, C. Stoeffler, A. Shelkovnikov, C. Daussy, A. Amy-Klein, C. Chardonnet, S. Zrig, L. Guy, J. Crassous, P. Soulard, P. Asselin, T.R. Huet, P. Schwerdtfeger, R. Bast, T. Saue, Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22, 870 (2010)

    Article  Google Scholar 

  17. I. Fernandez-Corbaton, M. Fruhnert, C. Rockstuhl, Objects of maximum electromagnetic chirality. Phys. Rev. X 6, 031013 (2016)

    Google Scholar 

  18. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley-VCH, New York, 1998)

    Google Scholar 

  19. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning, Boston, 1976)

    MATH  Google Scholar 

  20. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  21. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31 (2008)

    Article  ADS  Google Scholar 

  22. R. Taubert: From Near-Field to Far-Field: Plasmonic Coupling in Three-Dimensional Nanostructures. Ph.D. thesis, Universität Stuttgart (2012)

    Google Scholar 

  23. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  24. R.L. Olmon, B. Slovick, T.W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, M.B. Raschke, Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)

    Article  ADS  Google Scholar 

  25. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr., C.A. Ward, Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099 (1983)

    Article  ADS  Google Scholar 

  26. M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  27. L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  28. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters. Springer Series in Materials Science, vol. 25 (Springer, Berlin, 1995)

    Google Scholar 

  29. L. Novotny, Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)

    Article  ADS  Google Scholar 

  30. N. Liu, H. Giessen, Coupling effects in optical metamaterials. Angew. Chemie Int. Ed. 49, 9838 (2010)

    Article  Google Scholar 

  31. N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913 (2011)

    Article  Google Scholar 

  32. J.I. Gersten, A. Nitzan, Photophysics and photochemistry near surfaces and small particles. Surf. Sci. 158, 165 (1985)

    Article  ADS  Google Scholar 

  33. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  34. E. Prodan, P. Nordlander, Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 5444 (2004)

    Article  ADS  Google Scholar 

  35. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899 (2004)

    Article  ADS  Google Scholar 

  36. T.M. Lowry, Optical Rotatory Power (Longmans, Green & Co., London, 1935)

    Google Scholar 

  37. R. Weindl, Chiralität und Chaos. Ph.D. thesis, Universität Regensburg (2002)

    Google Scholar 

  38. P. Drude, Lehrbuch der Optik, 2nd edn. (S. Hirzel, Leipzig, 1906)

    MATH  Google Scholar 

  39. M. Born, Elektronentheorie des natürlichen optischen Drehungsvermögens isotroper und anisotroper Flüssigkeiten. Ann. Phys. 360, 177 (1918)

    Article  Google Scholar 

  40. W. Kuhn, Über die Drudesche Theorie der optischen Aktivität. Z. Phys. Chem. Abt. B 20, 325 (1933)

    MATH  Google Scholar 

  41. E.U. Condon, W. Altar, H. Eyring, One-electron rotatory power. J. Chem. Phys. 5, 753 (1937)

    Article  ADS  Google Scholar 

  42. C.W. Oseen, Über die Wechselwirkung zwischen zwei elektrischen Dipolen und über die Drehung der Polarisationsebene in Kristallen und Flüssigkeiten. Ann. Phys. 353, 1 (1915)

    Article  Google Scholar 

  43. M. Born, The natural optical activity of liquids and gases. Phys. Z. 16, 251 (1915)

    Google Scholar 

  44. W. Kuhn, Quantitative Verhältnisse und Beziehungen bei der natürlichen optischen Aktivität. Z. Phys. Chem. B 4, 14 (1929)

    MATH  Google Scholar 

  45. Y.P. Svirko, N.I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley-VCH, New York, 1998)

    Google Scholar 

  46. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media. Course of Theoretical Physics, vol. 8, 2nd edn. trans. by J.B. Sykes, J.S. Bell, M.J. Kearsley (Butterworth-Heinemann, Oxford, 1984)

    Google Scholar 

  47. I.V. Lindell, A.H. Sihvola, S. Tretyakov, A.J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, London, 1994)

    Google Scholar 

  48. A.H. Sihvola, I.V. Lindell, Bi-isotropic constitutive relations. Microw. Opt. Technol. Lett. 4, 295 (1991)

    Article  Google Scholar 

  49. A. Serdyukov, I. Semchenko, S. Tretyakov, A.H. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications. Electrocomponent Science Monographs, vol. 11 (Gordon and Breach, Amsterdam, 2001)

    Google Scholar 

  50. E. Hecht, Optics, 4th edn. (Pearson Education, Harlow, 2013)

    MATH  Google Scholar 

  51. N. Engheta, D. Jaggard, Electromagnetic chirality and its applications. IEEE Antennas Propag. Soc. Newsl. 30, 6 (1988)

    Article  Google Scholar 

  52. A. Moscowitz, Theoretical aspects of optical activity part one: small molecules. Adv. Chem. Phys. 4, 67 (1962)

    Google Scholar 

  53. U. Meierhenrich, Amino Acids and the Asymmetry of Life (Springer, Berlin, 2008)

    Google Scholar 

  54. F.A. Carey, R.J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms, 5th edn. (Springer, New York, 2007)

    Google Scholar 

  55. G.P. Moss, Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 68, 2193 (1996)

    Article  Google Scholar 

  56. R.G. Nelson, W.C. Johnson, Optical properties of sugars. I. Circular dichroism of monomers at equilibrium. J. Am. Chem. Soc. 94, 3343 (1972)

    Article  Google Scholar 

  57. M. Gingras, One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes. Chem. Soc. Rev. 42, 1051 (2013)

    Article  Google Scholar 

  58. N. Liu, S. Mukherjee, K. Bao, L.V. Brown, J. Dorfmüller, P. Nordlander, N.J. Halas, Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett. 12, 364 (2012)

    Article  ADS  Google Scholar 

  59. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  60. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758 (2009)

    Article  ADS  Google Scholar 

  61. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103 (2010)

    Article  ADS  Google Scholar 

  62. R. Taubert, M. Hentschel, J. Kästel, H. Giessen, Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett. 12, 1367 (2012)

    Article  ADS  Google Scholar 

  63. R. Taubert, M. Hentschel, H. Giessen, Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis. J. Opt. Soc. Am. B 30, 3123 (2013)

    Article  ADS  Google Scholar 

  64. V.K. Valev, J.J. Baumberg, C. Sibilia, T. Verbiest, Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 2517 (2013)

    Google Scholar 

  65. A.J. Mastroianni, S.A. Claridge, A.P. Alivisatos, Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455 (2009)

    Article  Google Scholar 

  66. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542 (2012)

    Article  ADS  Google Scholar 

  67. M. Hentschel, L. Wu, M. Schäferling, P. Bai, E.P. Li, H. Giessen, Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. ACS Nano 6, 10355 (2012)

    Article  Google Scholar 

  68. B. Bai, K. Ventola, J. Tervo, Y. Zhang, Determination of the eigenpolarizations in arbitrary diffraction orders of planar periodic structures under arbitrary incidence. Phys. Rev. A 85, 053808 (2012)

    Article  ADS  Google Scholar 

  69. M. Decker, New Light on Optical Activity: Interaction of Electromagnetic Waves with Chiral Photonic Metamaterials. Ph.D. thesis, Karlsruher Institut für Technologie (2010)

    Google Scholar 

  70. M. Hentschel, M. Schäferling, B. Metzger, H. Giessen, Plasmonic diastereomers: adding up chiral centers. Nano Lett. 13, 600 (2013)

    Article  ADS  Google Scholar 

  71. M. Hentschel, Complex 2D & 3D Plasmonic Nanostructures: Fano Resonances, Chirality, and Nonlinearities. Ph.D. thesis, Universität Stuttgart (2013)

    Google Scholar 

  72. X. Yin, M. Schäferling, B. Metzger, H. Giessen, Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. Nano Lett. 13, 6238 (2013)

    Article  ADS  Google Scholar 

  73. S.V. Zhukovsky, C. Kremers, D.N. Chigrin, Plasmonic rod dimers as elementary planar chiral meta-atoms. Opt. Lett. 36, 2278 (2011)

    Article  ADS  Google Scholar 

  74. D.N. Chigrin, C. Kremers, S.V. Zhukovsky, Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials. Appl. Phys. B 105, 81 (2011)

    Article  ADS  Google Scholar 

  75. B. Auguié, J.L. Alonso-Gómez, A. Guerrero-Martìnez, L.M. Liz-Marzán, Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods. J. Phys. Chem. Lett. 2, 846 (2011)

    Article  Google Scholar 

  76. L. Rosenfeld, Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen. Z. Phys. 52, 161 (1929)

    Article  ADS  MATH  Google Scholar 

  77. B. Frank, X. Yin, M. Schäferling, J. Zhao, S.M. Hein, P.V. Braun, H. Giessen, Large-area 3D chiral plasmonic structures. ACS Nano 7, 6321 (2013)

    Article  Google Scholar 

  78. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513 (2009)

    Article  ADS  Google Scholar 

  79. J.K. Gansel, M. Wegener, S. Burger, S. Linden, Gold helix photonic metamaterials: a numerical parameter study. Opt. Express 18, 1059 (2010)

    Article  ADS  Google Scholar 

  80. C. Rockstuhl, C. Menzel, T. Paul, F. Lederer, Optical activity in chiral media composed of three-dimensional metallic meta-atoms. Phys. Rev. B 79, 035321 (2009)

    Article  ADS  Google Scholar 

  81. Z. Fan, A.O. Govorov, Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 10, 2580 (2010)

    Article  ADS  Google Scholar 

  82. Z. Fan, A.O. Govorov, Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett. 12, 3283 (2012)

    Article  ADS  Google Scholar 

  83. A. Radke, T. Gissibl, T. Klotzbücher, P.V. Braun, H. Giessen, Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv. Mater. 23, 3018 (2011)

    Article  Google Scholar 

  84. A.V. Rogacheva, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006)

    Article  ADS  Google Scholar 

  85. M. Decker, M.W. Klein, M. Wegener, S. Linden, Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856 (2007)

    Article  ADS  Google Scholar 

  86. M. Decker, M. Ruther, C.E. Kriegler, J. Zhou, C.M. Soukoulis, S. Linden, M. Wegener, Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501 (2009)

    Article  ADS  Google Scholar 

  87. N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamaterials. Nat. Photon. 3, 157 (2009)

    Article  ADS  Google Scholar 

  88. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 104, 253902 (2010)

    Article  ADS  Google Scholar 

  89. M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35, 1593 (2010)

    Article  ADS  Google Scholar 

  90. R. Zhao, L. Zhang, J. Zhou, T. Koschny, C. Soukoulis, Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B 83, 035105 (2011)

    Article  ADS  Google Scholar 

  91. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.B. Kley, A. Tünnermann, F. Lederer, T. Pertsch, Chiral metamaterial composed of three-dimensional plasmonic nanostructures. Nano Lett. 11, 4400 (2011)

    Article  ADS  Google Scholar 

  92. Y. Zhao, M.A. Belkin, A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012)

    Article  ADS  Google Scholar 

  93. A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, N. Zheludev, Optical manifestations of planar chirality. Phys. Rev. Lett. 90, 107404 (2003)

    Article  ADS  Google Scholar 

  94. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005)

    Article  ADS  Google Scholar 

  95. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, M. Kuwata-Gonokami, Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings. Opt. Express 15, 9575 (2007)

    Article  ADS  Google Scholar 

  96. E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, N. Zheludev, Metamaterials: optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009)

    Article  ADS  Google Scholar 

  97. V.K. Valev, N. Smisdom, A.V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V.V. Moshchalkov, T. Verbiest, Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett. 9, 3945 (2009)

    Article  ADS  Google Scholar 

  98. F. Eftekhari, T. Davis, Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances. Phys. Rev. B 86, 075428 (2012)

    Article  ADS  Google Scholar 

  99. O. Arteaga, J. Sancho-Parramon, S. Nichols, B.M. Maoz, A. Canillas, S. Bosch, G. Markovich, B. Kahr, Relation between 2D/3D chirality and the appearance of chiroptical effects in real nanostructures. Opt. Express 24, 2242 (2016)

    Article  ADS  Google Scholar 

  100. K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, E.-B. Kley, Circular dichroism from chiral nanomaterial fabricated by on-edge lithography. Adv. Mater. 24, OP321 (2012)

    Google Scholar 

  101. K. Dietrich, C. Menzel, D. Lehr, O. Puffky, U. Hübner, T. Pertsch, A. Tünnermann, E.-B. Kley, Elevating optical activity: efficient on-edge lithography of three-dimensional starfish metamaterial. Appl. Phys. Lett. 104, 193107 (2014)

    Article  ADS  Google Scholar 

  102. C. Han, W. Y. Tam, Chirality from shadowing deposited metallic nanostructures. Photon. Nanostruct. Fundam. Appl. 13, 50 (2014)

    Google Scholar 

  103. B. Yeom, H. Zhang, H. Zhang, J.I. Park, K. Kim, A.O. Govorov, N.A. Kotov, Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett. 13, 5277 (2013)

    Article  ADS  Google Scholar 

  104. J.K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, M. Wegener, Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 100, 101109 (2012)

    Article  ADS  Google Scholar 

  105. J. Kaschke, M. Wegener, Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett. 40, 3986 (2015)

    Article  ADS  Google Scholar 

  106. A.G. Mark, J.G. Gibbs, T.-C. Lee, P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802 (2013)

    Article  ADS  Google Scholar 

  107. J.G. Gibbs, A.G. Mark, S. Eslami, P. Fischer, Plasmonic nanohelix metamaterials with tailorable giant circular dichroism. Appl. Phys. Lett. 103, 213101 (2013)

    Article  ADS  Google Scholar 

  108. K. Höflich, R.B. Yang, A. Berger, G. Leuchs, S. Christiansen, The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition. Adv. Mater. 23, 2657 (2011)

    Article  Google Scholar 

  109. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, A. Passaseo, Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced deposition. Adv. Opt. Mater. 2, 154 (2014)

    Article  Google Scholar 

  110. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M.D. Giorgi, D. Sanvitto, A. Passaseo, Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies. ACS Photon. 2, 105 (2015)

    Article  Google Scholar 

  111. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, A. Passaseo, Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nat. Commun. 6, 6484 (2015)

    Article  ADS  Google Scholar 

  112. V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà], D. Sanvitto, A. Passaseo, Three-dimensional nanohelices for chiral photonics. Appl. Phys. A 122, 280 (2016)

    Google Scholar 

  113. K.M. McPeak, C.D. van Engers, M. Blome, J.H. Park, S. Burger, M.A. Gosálvez, A. Faridi, Y.R. Ries, A. Sahu, D.J. Norris, Complex chiral colloids and surfaces via high-index off-cut silicon. Nano Lett. 14, 2934 (2014)

    Article  ADS  Google Scholar 

  114. J.H. Singh, G. Nair, A. Ghosh, A. Ghosh, Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond. Nanoscale 5, 7224 (2013)

    Article  ADS  Google Scholar 

  115. G. Nair, H.J. Singh, D. Paria, M. Venkatapathi, A. Ghosh, Plasmonic interactions at close proximity in chiral geometries: route toward broadband chiroptical response and giant enantiomeric sensitivity. J. Phys. Chem. C 118, 4991 (2014)

    Article  Google Scholar 

  116. L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, D. Grützmacher, Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nanotechnology 16, 655 (2005)

    Article  ADS  Google Scholar 

  117. A. Demetriadou, J.B. Pendry, Extreme chirality in Swiss roll metamaterials. J. Phys. Condens. Matter 21, 376003 (2009)

    Article  Google Scholar 

  118. W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, N.A. Kotov, Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153 (2009)

    Article  ADS  Google Scholar 

  119. W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N.A. Kotov, Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114 (2012)

    Article  Google Scholar 

  120. V.E. Ferry, J.M. Smith, A.P. Alivisatos, Symmetry breaking in tetrahedral chiral plasmonic nanoparticle assemblies. ACS Photon. 1, 1189 (2014)

    Article  Google Scholar 

  121. D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, J. Bibette, Chiral colloidal clusters. Nature 455, 380 (2008)

    Article  ADS  Google Scholar 

  122. A. Guerrero-Martìnez, B. Auguié, J.L. Alonso-Gómez, Z. Džolic, S. Gómez-Gra\(\widetilde{n}\)a, M. Žinic, M.M. Cid, L.M. Liz-Marzán, Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chemie Int. Ed. 123, 5613 (2011)

    Google Scholar 

  123. A. Guerrero-Martìnez, J.L. Alonso-Gómez, B. Auguié, M.M. Cid, L.M. Liz-Marzán, From individual to collective chirality in metal nanoparticles. Nano Today 6, 381 (2011)

    Article  Google Scholar 

  124. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F.C. Simmel, A.O. Govorov, T. Liedl, DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311 (2012)

    Article  ADS  Google Scholar 

  125. X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, B. Ding, Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134, 146 (2012)

    Article  Google Scholar 

  126. W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, N.A. Kotov, Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 3, 1934 (2013)

    ADS  Google Scholar 

  127. X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F.J. Garcìa de Abajo, N. Liu, B. Ding, Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 13, 2128 (2013)

    Article  ADS  Google Scholar 

  128. X. Lan, X. Lu, C. Shen, Y. Ke, W. Ni, Q. Wang, Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 137, 457 (2015)

    Article  Google Scholar 

  129. M.J. Urban, P.K. Dutta, P. Wang, X. Duan, X. Shen, B. Ding, Y. Ke, N. Liu, Plasmonic toroidal metamolecules assembled by DNA Origami. J. Am. Chem. Soc. 138, 5495 (2016)

    Google Scholar 

  130. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A.K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, X. Zhang, Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012)

    Article  ADS  Google Scholar 

  131. X. Yin, M. Schäferling, A.-K.U. Michel, A. Tittl, M. Wuttig, T. Taubner, H. Giessen, Active chiral plasmonics. Nano Lett. 15, 4255 (2015)

    Article  ADS  Google Scholar 

  132. X. Duan, S. Kamin, F. Sterl, H. Giessen, N. Liu, Hydrogen-regulated chiral nanoplasmonics. Nano Lett. 16, 1462 (2016)

    Article  ADS  Google Scholar 

  133. A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl, N. Liu, Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schäferling .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schäferling, M. (2017). Chirality in Nature and Science. In: Chiral Nanophotonics. Springer Series in Optical Sciences, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-42264-0_2

Download citation

Publish with us

Policies and ethics