Skip to main content

Energy Band Structure

  • Chapter
  • First Online:
Introduction to Isotopic Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 248))

  • 704 Accesses

Abstract

Optical probing and manipulation of electron quantum states in isotope-mixed compounds at the nanoscale are key to developing future nanophotonic devices, which are capable of ultrafast and low-power operation. Before beginning a general discussion on the application of isotopic materials science, it is helpful to have the knowledge of the electronic band structure used in materials. The modern view of solid-state physics is based on the presentation of elementary excitations having mass, quasi-impulse, and electrical charge. The base of such view of solid is ideal gas, which described the behavior of the system, e.g., noninteracting electrons. Such an approach to model of elementary excitations as a suitable model for the application of the quantum mechanics for the solution of solid-state physics task. In this chapter, some peculiarities of isotopic materials science will be considered by taking into account the dependence of the properties of elementary excitations on the isotope effect. It is illustrated when the dimensions of a solid are reduced to the size of the characteristic length of electrons in the isotope-mixed materials (de Broglie wavelength, localization length), new physical properties due to quantum effects become apparent. Our intention has been to physics of low-dimensional isotope-based compounds and quantum devices would built up to the treatment of those new electronic, transport and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Pines, Elementary Excitations in Solids (W.A. Benjamin Inc., New York, 1963)

    Google Scholar 

  2. S.I. Pekar, Crystaloptics and Addition Waves (Naukova Dumka, Kiev, 1982). (in Russian)

    Google Scholar 

  3. G.P. Srivastava, The Physics of Phonons (Hilger, Bristol, 1990)

    Google Scholar 

  4. V.G. Plekhanov, Isotope - Mixed Crystals: Fundamentals and Applications (unpublished, 2011)

    Google Scholar 

  5. V.G. Plekhanov, Manifestation and Origin of the Isotope Effect (2009), arXiv:0907.2024

  6. V.G. PLekhanov, Giant Isotope Effect in Solids (Stefan - University Press, La Jola, 2004)

    Google Scholar 

  7. J. Callaway, Energy Band Structure (Academic Press, New York, 1964)

    Google Scholar 

  8. R.M. Martin, Electronic Structure - Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  9. J.M. Ziman, Electrons and Phonons (Oxford University Press, London, 1963)

    Google Scholar 

  10. N.W. Aschcroft, N.D. Mermin, Solid State Physics (Holt Reinhart and Winston, New York, 1975)

    Google Scholar 

  11. M.L. Cohen, J. Chelikowsky, Electronic Properties and Optical Properties of Semiconductors, vol. 75, 2nd edn., Springer Series Solid State Sci (Springer, Berlin, 1989)

    Google Scholar 

  12. V.G. Plekhanov, Isotope Effect - Macroscopic Maniestation of the Strong Interaction (LAMBERT Academic Publishing, Saarbrücken, 2017). (in Russian)

    Google Scholar 

  13. J.C. Slater, Electronic Structure of Molecules, vol. 1 (McCraw - Hill Company Inc., New York, 1963)

    Google Scholar 

  14. J.L. Birman, Space Group Symmetry, in Handbuch für Physik, vol. 25/26 (Berlin - New York, 1974)

    Google Scholar 

  15. A.I. Lebedev, Physics of Semiconducting Devices (Fizmatlit, Moscow, 2001). (in Russian)

    Google Scholar 

  16. J.R. Chelikowsky, M.L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc - blende semiconductors. Phys. Rev. B 14, 556–582 (1976)

    CAS  Google Scholar 

  17. V.C. Vavilov, A.A. Gippius, E.A. Konorova, Electron and Optical Processes in Diamond (Science, Moscow, 1985) (in Russian)

    Google Scholar 

  18. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)

    Google Scholar 

  19. V.G. Plekhanov, Isotope effects in solid state physics, in Semiconductor and Semimetals, vol. 68, ed. by R.K. Willardson, E. Weber (Academic Press, San Diego, 2001)

    Google Scholar 

  20. R.P. Mildren, Intrinsic optical properties of diamond, in Optical Engineering of Diamond, ed. by R.P. Mildren, J.R. Ratenau (Wiley - VCH Verlag GmbH, 2013)

    Google Scholar 

  21. J.R. Chelikowsky, S.G. Louie, First - principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: application to diamond. Phys. Rev. B 29, 3470–3482 (1984)

    CAS  Google Scholar 

  22. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)

    CAS  Google Scholar 

  23. V.G. Plekhanov, Elementary excitations in isotope - mixed crystals, Phys. Rep. 410(1–3), 1–235 (2005)

    Google Scholar 

  24. M. Cardona, Renormalization of the optical response of semiconductors by electron - phonon interaction, phys. st. sol. (a) 188, 1209–1232 (2001)

    Google Scholar 

  25. V.G. Plekhanov, Wannier - Mott excitons in isotope - disordered crystals. Rep. Prog. Phys. 61, 1045–1095 (1998)

    CAS  Google Scholar 

  26. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958)

    Google Scholar 

  27. G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostrand, New York, 1951)

    Google Scholar 

  28. V.G. Plekhanov, Experimental evidence of strong phonon scattering in isotopical disordered systems: the case LiH\(_{\rm x}D_{\rm 1-x}\). Phys. Rev. B 51, 8874–8878 (1995)

    Google Scholar 

  29. A.F. Kapustinsky, L.M. Shamovsky, K.S. Bayushkina, Thermochemistry of isotopes. Acta Physicochim. (USSR) 7, 799–810 (1937)

    Google Scholar 

  30. V.G. Plekhanov, Isotopic and disorder effects in large radius exciton spectroscopy. Physics - Uspekhi (moscow) 40, 533–579 (1997)

    Google Scholar 

  31. F.I. Kreingold, K.F. Lider, M.B. Shabaeva, Influence of isotope substitution sulfur on the exciton spectrum in CdS crystal, Fiz. Tverd. Tela (St. Petersburg) 26, 3940–3941 (1984) (in Russian)

    Google Scholar 

  32. V.G. Plekhanov, Renormalization the energy of elementary excitations in solids by the strong (nuclear) interaction. Universal J. Phys. Appl. 11, 6–12 (2017)

    Google Scholar 

  33. R.J. Elliott, J.A. Krumhansl, P.L. Leath, The theory and properties of randomly disordered crystals and physical systems. Rev. Mod. Phys. 46, 465–542 (1974)

    CAS  Google Scholar 

  34. Y. Onodera, Y. Toyozawa, Persistence and amalgamation types in the electronic structure of mixed crystals. J. Phys. Soc. Japan 24, 341–355 (1968)

    CAS  Google Scholar 

  35. Y. Toyozawa, Optical Processes in Solids (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  36. M. Cardona, M.L.W. Thewalt, Isotope effect on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005)

    CAS  Google Scholar 

  37. F.I. Kreingold, K.F. Lider, K.I. Solov’ev, Isotope shift of exciton line in absorption spectrum Cu\(_{2}\)O. JETP Lett. (Moscow) 23, 679–681 (1976). (in Russian)

    CAS  Google Scholar 

  38. F.I. Kreingold, K.F. Lider, V.F. Sapega, Influence of isotope substitution on the exciton spectrum in Cu\(_{2}\)O crystal, Fiz. Tverd. Tela (St. Petersburg) 19, 3158–3160 (1977) (in Russian)

    Google Scholar 

  39. F.I. Kreingold, B.S. Kulinkin, Influence of isotope substitution on the forbidden gap of ZnO crystals, ibid, 28, 3164–3166 (1986) (in Russian)

    Google Scholar 

  40. F.I. Kreingold, Dependence of band gap ZnO on zero - point energy, ibid, 20, 3138–3140 (1978) (in Russian)

    Google Scholar 

  41. J.M. Zhang, T. Ruf, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B 57, 9716–9722 (1998)

    CAS  Google Scholar 

  42. T.A. Meyer, M.L.W. Thewalt, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B 69, 115214–5 (2004)

    Google Scholar 

  43. G.L. Bir, G.E. Picus, Symmetry and Deformation in Semiconductors (Science, Moscow, 1972) (in Russian)

    Google Scholar 

  44. L.F. Lastras - Martinez, T. Ruf, M. Konuma et al., Isotopic effect on the dielectric response of Si around the E\(_{1}\) gap. Phys. Rev. B 61, 12946–12951 (2000)

    CAS  Google Scholar 

  45. D. Karaskaja, M.L.W. Thewalt, T. Ruf, Photoluminescence studies of isotopically - enriched silicon: isotopic effects on indirect electronic band gap and phonon energies. Solid State Commun. 123, 87–92 (2003)

    Google Scholar 

  46. S. Tsoi, H. Alowadhi, X. Lu, Electron - phonon renormalization of electronic band gaps of semiconductors: isotopically enriched silicon. Phys. Rev. B 70, 193201–4 (2004)

    Google Scholar 

  47. A.K. Ramdas, S. Rodriguez, S. Tsoi et al., Electronic band gap of semiconductors as influenced by their isotopic composition. Solid State Commun. 133, 709–714 (2005)

    CAS  Google Scholar 

  48. S. Tsoi, S. Rodriguez, A.K. Ramdas et al., Isotopic dependence of the E\(_{0}\) and E\(_{1}\) direct gaps in the electronic band structure of Si. Phys. Rev. B 72, 153203–4 (2005)

    Google Scholar 

  49. D.G. Thomas (ed.), II -VI Semiconducting Comounds (Benjamin, New York, 1967)

    Google Scholar 

  50. A.A. Klochikhin, V.G. Plekhanov, Isotope effect on the Wannier - Mott exciton levels. Sov. Phys. Solid state 22, 342–344 (1980)

    Google Scholar 

  51. V.G. Plekhanov, Direct observation of the effect of isotope - induced - disorder on exciton binding energy in LiH\(_{\rm x}D_{\rm 1-x}\) mixed crystals. J. Phys. Condens. Matter 19, 086221–9 (2007)

    Google Scholar 

  52. R.S. Knox, Theory of Excitons (Academic Press, New York, 1963)

    Google Scholar 

  53. A.T. Collins, S.C. Lawson, G. Davies, H. Kanda, Indirect energy gap of \(^{13}\)C diamond. Phys. Rev. Lett. 65, 891–894 (1990)

    CAS  Google Scholar 

  54. H. Watanabe, S. Shikata, Superlattice structures from diamond. Diam. Relat. Mat. 20, 980–982 (2011)

    CAS  Google Scholar 

  55. J. Barjon, F. Jomard, A. Tallaire et al., Determination of exciton diffusion lengths in isotopically engineered diamond junctions. Appl. Phys. Lett. 100, 122107–4 (2012)

    Google Scholar 

  56. H. Watanabe, T. Koretsune, S. Nakashima et al., Isotope composition dependence of the band - gap energy in diamond. Phys. Rev. B 88, 205420–5 (2013)

    Google Scholar 

  57. C.D. Clark, P.J. Dean, P.V. Harris, Intrinsic edge absorption in diamond. Proc. R. Soc. (London) A277, 312–319 (1964)

    Google Scholar 

  58. P.J. Dean, Inter-impurity recombinations in semiconductors. Prog. Solid State Chem. 8, 1–126 (1973)

    CAS  Google Scholar 

  59. A.T. Collins, Band structure (Chap. 1), in Handbook of Industrial Diamond and Diamond Films, ed. by M.A. Prelas, G. Popovici, L.K. Bigelow (Marcel Dekker Inc., New York, 1998), p. 1

    Google Scholar 

  60. Zh.I. Alferov, The history and future of semiconductor heterostructures, Fiz. i Tech. Poluprovod. (Phys. Tech. Semicond) 32, 3–18 (1998) (in Russian)

    Google Scholar 

  61. H. Watanabe, C.E. Nebel, S. Shikata, Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009)

    CAS  Google Scholar 

  62. V.G. Plekhanov, Isotope Low - Dimensional Structures (Springer, Heidelberg, 2012)

    Google Scholar 

  63. V.G. Plekhanov, Isotope - Based Quantum Information (Springer, Heidelberg, 2012)

    Google Scholar 

  64. V.G. Plekhanov, A.V. Emel’yanenko, A.U. Grinfelds, Excitonic structure of Nai and LiH crystals cleaved in liquid helium. Phys. Lett. A 101, 291–294 (1984)

    Google Scholar 

  65. V.G. Plekhanov, The influence of the surface state on the manifestation of exciton states in the wide - gap insulators. Opt. Spectr. 62, 1300–1309 (1987). (in Russian)

    CAS  Google Scholar 

  66. V.G. Plekhanov, Comparative study of isotope and chemical effects on the exciton states in LiH crystals. Prog. Solid State Chem. 29, 71–177 (2001)

    CAS  Google Scholar 

  67. V.G. Plekhanov, Resonant secondary emission spectra, in Proceedings International Conference on LASERS’80 (STS Press, VA, USA, 1981), pp. 94–99

    Google Scholar 

  68. J.L. Verble, J.L. Warren, J.L. Yarnell, Lattice dynamics of lithium hydride. Phys. Rev. 168, 980–989 (1968)

    CAS  Google Scholar 

  69. S.D. Lester, T.S. Kim, B.G. Streetman, Distortion of band - edge luminescence in InP due to self - absorption. J. Appl. Phys. 63, 853–861 (1988)

    CAS  Google Scholar 

  70. M. Namiki, S. Pascazio, Quantum theory of measuremen based on the many-Hilbert-space approach. Phys. Reports 232, 301–411 (1993)

    Google Scholar 

  71. N. Gerasimenko, Ju. Parhomenko, Silicon–Material of Nanoelectronics (Technosphera, Moscow, 2007) (in Russian)

    Google Scholar 

  72. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted Press, New York, 1988)

    Google Scholar 

  73. R.P. Feynman, R.P. Leighton, M. Sands, The Feynman Lecture in Physics, vol. 3 (Reading, Addison - Wesley, 1965)

    Google Scholar 

  74. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Pergamon Press, New York, 1977)

    Google Scholar 

  75. B.B. Kadomtsev, Dynamics and Information (UFN, Moscow, 1997). (in Russian)

    Google Scholar 

  76. K. Goser, P. Glösekötter, J. Dienstuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004)

    Google Scholar 

  77. K. Barnham, D. Vvedensky, Low - Dimensional Semicoonductor Structures (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  78. M.J. Kelly, Low - Dimensional Semiconductors (Clarendon Press, Oxford, 1995)

    Google Scholar 

  79. P. Michler (ed.), Single Semiconductor Quantum Dots (Springer, Berlin, 2009)

    Google Scholar 

  80. P. Harrison, Quantum Wells, Wires and Dots (Wiley, New York, 2001)

    Google Scholar 

  81. A.M. Fox, Optoelectronics in quantum well structures. Contemp. Phys. 37, 11–125 (1996)

    Google Scholar 

  82. H. Grabert (ed.), Special Issue on Single Charge Tunneling, Zs. Physik 85, Suppl 3 (1991)

    Google Scholar 

  83. H. Grabert, M.H. Devored (eds.), Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, vol. 294, NATO ASI Series B (Plenum, New York, 1992)

    Google Scholar 

  84. S. Washburn, R.A. Webb, Quantum transport in small disordered samples from the diffuse to the ballistic regime. Rep. Prog. Phys. 55, 131–1383 (1992)

    Google Scholar 

  85. D.V. Averin, A.N. Korotkov, K.K. Likharev, Theory of single electron charging of quantum wells and dots. Phys. Rev. 44, 6199–6211 (1991)

    CAS  Google Scholar 

  86. J. Bylander, T. Duty, P. Delsing, Current measurement by real-time counting of single electrons. Nature 434, 361–364 (2005)

    CAS  Google Scholar 

  87. D. Bimberg, M. Grundman, N.N. Ledentsov, Quantum Dot Heterostructure (Wiley, Chichester, 1999)

    Google Scholar 

  88. L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)

    Google Scholar 

  89. G.W. Bryant, G.S. Solomon (eds.), Optics of Quantum Dots and Wires (Artech House Inc., London, 2005)

    Google Scholar 

  90. H.J. Krenner, S. Stufler, M. Sabathil et al., Recent advances in exciton-based quantum information processing in quantum dot nanostructures. New J. Phys. 7, 185–187 (2005)

    Google Scholar 

  91. R.J. Nelson, Excitons (Chap. 8), in Excitons in Semiconductor Alloys, ed. by E.I. Rashba, M.D. Sturge (North–Holland Publ. Co., Amsterdam, 1982), pp. 319–348

    Google Scholar 

  92. K.K. Bajaj, Use of excitons in material characterization of semiconductor system, Mater. Sci. Eng. R. 24, 59–120 (2001)

    Google Scholar 

  93. J.M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869–883 (1955)

    CAS  Google Scholar 

  94. J.M. Luttinger, Quantum theory of cyclotron resonance in semiconductors: general theory. Phys. Rev. 102, 1030–1041 (1956)

    CAS  Google Scholar 

  95. K. Seeger, Semiconductor Physics (Springer, New York, 1973)

    Google Scholar 

  96. A. Baldareschi, N.O. Lipari, Energy levels of direct excitons in semiconductors with degenerate bands. Phys. Rev. B 3, 439–451 (1971)

    Google Scholar 

  97. G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Exciton binding energy in quantum wells. Phys. Rev. B 26, 1974–1979 (1982)

    CAS  Google Scholar 

  98. L.V. Keldysh, Excitons in semiconductor–dielectric nanostructures, Phys. Stat. Solidi (a) 164, 3–12 (1997)

    Google Scholar 

  99. V.G. Plekhanov, Isotope Effect: Physics and Applications (Palmarium Academic Publishing, Saarbrücken, 2014)

    Google Scholar 

  100. R.C. Miller, D.A. Kleinman, W.T. Tsang, Observation of the excited level of excitons in GaAs quantum wells. Phys. Rev. B2, 1134–1136 (1981); Phys. Stat. Solidi A B25, 6545–6549 (1982)

    Google Scholar 

  101. R.L. Greene, K.K. Bajaj, D.E. Phelps, Energy levels of Wannier excitons in GaAs–Ga\(_{\rm 1-x}Al_{\rm x}\) As quantum–well structures. Phys. Stat. Solidi A B29, 1807–1812 (1984)

    Google Scholar 

  102. R.L. Greene, K.K. Bajaj, Binding energies of Wannier excitons in GaAs-Ga\(_{\rm 1-x}Al_{\rm x}\)As quantum-well structures. Solid State Commun. 88, 955–959 (1993)

    Google Scholar 

  103. M. Altarelli, Electronic structure and semiconductor-semimetal transitions. Phys. Rev. B 28, 842–845 (1983)

    CAS  Google Scholar 

  104. M. Altarelli, Electronic structures of two-dimensional systems. J. Luminesc. 30, 472–487 (1985)

    CAS  Google Scholar 

  105. A. Fasolino, M. Altarelli, in Two-Dimensional Systems, Heterostructures and Superlattices, vol. 43, Springer Series in Solid State Sci, ed. by G. Bauer, F. Kucher, H. Heinrich (1984), pp. 176–212

    Google Scholar 

  106. R. Dingle, in Festkörperprobleme, vol. 15 of Advances in Solid State Phys., ed. by H.J. Quesser (Pergamon/Vieweg, Braunschweig, 1975), p. 21

    Google Scholar 

  107. J. Hegarty, M.D. Sturge, Studies of exciton localization in quantum-well structures by non - linear techniques. JOSA B 2, 1143–1154 (1985)

    CAS  Google Scholar 

  108. P. Dawson, K.J. Moore, G. Duggan et al., Unambiguous observation of the 2S state of the light - and heavy - hole excitons in GaAs - (AlGa)As MQW structures. Phys. Rev. B 34, 6007–6010 (1986)

    Google Scholar 

  109. S.A. Moskalenko, Towards to theory of Mott excitons in alkali halides crystals. Opt. Spectr. 5, 147–155 (1958)

    CAS  Google Scholar 

  110. M.A. Lampert, Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett. 1, 450–453 (1958)

    CAS  Google Scholar 

  111. V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mat. Sci. 51, 287–426 (2006)

    CAS  Google Scholar 

  112. B. Hönerlage, R. Levy, J.B. Grun et al., The dispersion of excitons, polaritons and biexcitons in direct - gap semiconductors. Phys. Reports 124, 163–253 (1985)

    Google Scholar 

  113. D. Birkedal, J. Singh, V.G. Lyssenko et al., Binding of quasi-two-dimensional biexcitons. Phys. Rev. Lett. 76, 672–675 (1996)

    CAS  Google Scholar 

  114. G. Bacher, T. Kömmel, Optical properties of epitaxially grown wide bandgap single quantum dots, in Single Semiconductor Quantum Dots, ed. by P. Michler (Berlin, Springer, 2009)

    Google Scholar 

  115. G. Chen, T.H. Stievater, E.T. Batteh et al., Biexciton quantum coherence in a single quantum dot. Phys. Rev. Lett. 88, 117901–117904 (2002)

    Google Scholar 

  116. Special issue on high excitation and short pulse phenomena. J. Luminesc. 30(1–4) (1985)

    Google Scholar 

  117. K. Herz, T. Kümmel, G. Bacher et al., Biexcitons in low-dimensional CdZnSe/ZnSe structures. Phys. Stat. Solidi (a) 164, 205–208 (1997)

    Google Scholar 

  118. B. Jusserand, M. Cardona, Raman spectroscopy in light scattering of vibrations in superlattice, in Light Scattering in Solids, ed. by M. Cardona, G. Güntherodt (Springer, Berlin, 1989), pp. 49–152

    Google Scholar 

  119. F. Herman, R.L. Kortum, C.D. Kuglin et al., in II - VI Semiconducting Compounds, ed. by D.G. Thomas (Benjamin, New York, 1967)

    Google Scholar 

  120. H. Kim, S. Rodriguez, T.R. Anthony, Electronic transitions of holes bound to boron acceptors in isotopically controlled diamond. Solid State Commun. 102, 861–865 (1997)

    CAS  Google Scholar 

  121. M. Cardona, Dependence of the excitation energies of boron in diamond on isotopic mass. Solid State Commun. 121, 7–8 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Plekhanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plekhanov, V.G. (2018). Energy Band Structure. In: Introduction to Isotopic Materials Science. Springer Series in Materials Science, vol 248. Springer, Cham. https://doi.org/10.1007/978-3-319-42261-9_2

Download citation

Publish with us

Policies and ethics