Skip to main content

Leveraging Gene Synthesis, Advanced Cloning Techniques, and Machine Learning for Metabolic Pathway Engineering

  • Chapter
  • First Online:
Metabolic Engineering for Bioprocess Commercialization

Abstract

Modulation and optimization of metabolic pathways is accomplished by several complementary approaches that influence the presence, catalytic properties, and abundance of pathway enzymes. System-wide approaches can also provide an alternative means to influence pathway performance. Current gene synthesis technologies and other molecular tools enable the manipulation of biological systems at the individual component or part level as well as from a whole genome perspective. Our ability to precisely engineer large DNA sequences has matured over the past few decades to enable facile de novo synthesis of genes, vectors, pathways, and even entire chromosomes with any desired nucleotide sequence. We are no longer confined to the cloning and limited manipulation of naturally occurring DNA sequences to engineer or transplant pathways for the production of natural or novel compounds in a favorable host organism. With gene synthesis technologies, DNA parts and assemblies with virtually any imaginable DNA sequence can be created and introduced into any production host system for metabolic pathway. Biological diversity space is vast. In comparison, our ability to navigate this multidimensional space is limited. Reliably navigating this mega-dimensional space requires versatile control over DNA sequence. DNA2.0 has developed a bioengineering platform that seamlessly integrates gene synthesis, genome editing, and modern machine learning for whole bio-system optimization. This approach enables exploration of a large number of variables (e.g., synonymous mutations, amino acid substitutions, DNA or protein parts all the way to pathway replacement and genome-level modifications) while minimizing the number of samples needed. A key to our approach is the broad, unbiased sampling of targeted sequence variables. Causal variables are identified and their relative contribution quantified by iterative rounds of systematic exploration. The technology is generic and broadly applicable in biology and can be used within existing Quality by Design (QbD) processes to capture and interrogate design information far upstream of where QbD is typically applied for industrial scale bioprocesses. Several case studies that illustrate the efficiency and power of the approach are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74. doi:10.1126/science.1191652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin AP, Keasling JD (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4(1):1. doi:10.1186/1754-1611-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Annaluru N, Muller H, Ramalingam S, Kandavelou K, London V, Richardson SM, Dymond JS, Cooper EM, Bader JS, Boeke JD, Chandrasegaran S (2012) Assembling DNA fragments by USER fusion. Methods Mol Biol 852:77–95. doi:10.1007/978-1-61779-564-0_7

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89. doi:10.1038/nature06450

    Article  CAS  PubMed  Google Scholar 

  • Benders GA, Noskov VN, Denisova EA, Lartigue C, Gibson DG, Assad-Garcia N, Chuang RY, Carrera W, Moodie M, Algire MA, Phan Q, Alperovich N, Vashee S, Merryman C, Venter JC, Smith HO, Glass JI, Hutchison CA 3rd (2010) Cloning whole bacterial genomes in yeast. Nucleic Acids Res 38(8):2558–2569. doi:10.1093/nar/gkq119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr PA, Park JS, Lee YJ, Yu T, Zhang S, Jacobson JM (2004) Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res 32(20):e162. doi:10.1093/nar/gnh160

    Article  PubMed  PubMed Central  Google Scholar 

  • Casini A, MacDonald JT, De Jonghe J, Christodoulou G, Freemont PS, Baldwin GS, Ellis T (2014) One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res 42(1):e7. doi:10.1093/nar/gkt915

    Article  CAS  PubMed  Google Scholar 

  • Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297(5583):1016–1018. doi:10.1126/science.1072266

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10(7):659–664. doi:10.1038/nmeth.2515

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502(7472):571–574. doi:10.1038/nature12536

    Article  CAS  PubMed  Google Scholar 

  • Cobb RE, Ning JC, Zhao H (2014) DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41(2):469–477. doi:10.1007/s10295-013-1358-3

    Article  CAS  PubMed  Google Scholar 

  • de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman JD, Chandran SS (2014) Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 3(2):97–106. doi:10.1021/sb4001992

    Article  PubMed  Google Scholar 

  • Dillon PJ, Rosen CA (1990) A rapid method for the construction of synthetic genes using the polymerase chain reaction. Biotechniques 9(3):298, 300

    Google Scholar 

  • Ehren J, Govindarajan S, Moron B, Minshull J, Khosla C (2008) Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng Des Sel: PEDS 21(12):699–707. doi:10.1093/protein/gzn050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3(11):e3647. doi:10.1371/journal.pone.0003647

    Article  PubMed  PubMed Central  Google Scholar 

  • Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. doi:10.1038/msb.2012.66

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1935) Design of experiments. Oliver and Boyd, London

    Google Scholar 

  • Fuhrmann M, Oertel W, Berthold P, Hegemann P (2005) Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucleic Acids Res 33(6):e58. doi:10.1093/nar/gni058

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA 3rd, Smith HO (2008a) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220. doi:10.1126/science.1151721

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA 3rd (2008b) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105(51):20404–20409. doi:10.1073/pnas.0811011106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56. doi:10.1126/science.1190719

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan S, Mannervik B, Silverman JA, Wright K, Regitsky D, Hegazy U, Purcell TJ, Welch M, Minshull J, Gustafsson C (2014) Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase. ACS Synth Biol. doi:10.1021/sb500242x

    PubMed  Google Scholar 

  • Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M (2012) Engineering genes for predictable protein expression. Protein Expr Purif 83(1):37–46. doi:10.1016/j.pep.2012.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hand D, Mannila H, Smyth P (2001) Principles of data mining. The MIT Press, Cambridge, MA

    Google Scholar 

  • Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, Arnold FH (2009) A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci USA 106(14):5610–5615. doi:10.1073/pnas.0901417106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198(4321):1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Im JA, Choi SY, Lee JI, Lee SY (2014) Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab Eng 23:165–174. doi:10.1016/j.ymben.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF 3rd, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391. doi:10.1126/science.1152692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson J, Norberg T, Carlsson L, Gustafsson C, Wold S (1993) Quantitative sequence-activity models (QSAM)–tools for sequence design. Nucleic Acids Res 21(3):733–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung YK, Lee SY (2011) Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. J Biotechnol 151(1):94–101. doi:10.1016/j.jbiotec.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  • Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105(1):161–171. doi:10.1002/bit.22548

    Article  CAS  PubMed  Google Scholar 

  • Khorana HG (1979) Total synthesis of a gene. Science 203(4381):614–625

    Article  CAS  PubMed  Google Scholar 

  • Khorana HG, Agarwal KL, Buchi H, Caruthers MH, Gupta NK, Kleppe K, Kumar A, Otsuka E, RajBhandary UL, Van de Sande JH, Sgaramella V, Terao T, Weber H, Yamada T (1972) Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol 72(2):209–217

    Google Scholar 

  • Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci USA 101(44):15573–15578. doi:10.1073/pnas.0406911101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2007) Genome transplantation in bacteria: changing one species to another. Science 317(5838):632–638. doi:10.1126/science.1144622

    Article  CAS  PubMed  Google Scholar 

  • Lartigue C, Vashee S, Algire MA, Chuang RY, Benders GA, Ma L, Noskov VN, Denisova EA, Gibson DG, Assad-Garcia N, Alperovich N, Thomas DW, Merryman C, Hutchison CA 3rd, Smith HO, Venter JC, Glass JI (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325(5948):1693–1696. doi:10.1126/science.1173759

    Article  CAS  PubMed  Google Scholar 

  • Levay-Young B, Olesiuk M, Gustafsson C, Minshull J (2013) Library format for bioengineering; maximizing screening efficiency through good design. In: Genetic engineering & biotechnology news, vol 33. Mary Ann Liebert, Inc., New Rochelle, NY

    Google Scholar 

  • Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59. doi:10.1007/978-1-61779-564-0_5

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Warmuth MK, Govindarajan S, Ness JE, Wang RP, Gustafsson C, Minshull J (2007) Engineering proteinase K using machine learning and synthetic genes. BMC Biotechnol 7:16. doi:10.1186/1472-6750-7-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandecki W, Hayden MA, Shallcross MA, Stotland E (1990) A totally synthetic plasmid for general cloning, gene expression and mutagenesis in Escherichia coli. Gene 94(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802. doi:10.1038/nbt833

    Article  CAS  PubMed  Google Scholar 

  • Mellitzer A, Ruth C, Gustafsson C, Welch M, Birner-Grunberger R, Weis R, Purkarthofer T, Glieder A (2014) Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. J Biotechnol 191:187–195. doi:10.1016/j.jbiotec.2014.08.035

    Article  CAS  PubMed  Google Scholar 

  • Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23(9):1171–1176. doi:10.1038/nbt1128

    Article  CAS  PubMed  Google Scholar 

  • Midelfort KS, Kumar R, Han S, Karmilowicz MJ, McConnell K, Gehlhaar DK, Mistry A, Chang JS, Anderson M, Villalobos A, Minshull J, Govindarajan S, Wong JW (2013) Redesigning and characterizing the substrate specificity and activity of Vibrio fluvialis aminotransferase for the synthesis of imagabalin. Protein Eng Des Sel: PEDS 26(1):25–33. doi:10.1093/protein/gzs065

    Article  CAS  PubMed  Google Scholar 

  • Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253. doi:10.1146/annurev.ge.25.120191.001305

    Article  CAS  PubMed  Google Scholar 

  • Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA, Tran AB, Paull M, Keasling JD, Arkin AP, Endy D (2013a) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354–360. doi:10.1038/nmeth.2404

    Article  CAS  PubMed  Google Scholar 

  • Mutalik VK, Guimaraes JC, Cambray G, Mai QA, Christoffersen MJ, Martin L, Yu A, Lam C, Rodriguez C, Bennett G, Keasling JD, Endy D, Arkin AP (2013b) Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods 10(4):347–353. doi:10.1038/nmeth.2403

    Article  CAS  PubMed  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459. doi:10.1016/j.copbio.2003.08.005

    Article  CAS  PubMed  Google Scholar 

  • Pachuk CJ, Samuel M, Zurawski JA, Snyder L, Phillips P, Satishchandran C (2000) Chain reaction cloning: a one-step method for directional ligation of multiple DNA fragments. Gene 243(1–2):19–25

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532. doi:10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  • Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4(7):e6441. doi:10.1371/journal.pone.0006441

    Article  PubMed  PubMed Central  Google Scholar 

  • Richmond KE, Li MH, Rodesch MJ, Patel M, Lowe AM, Kim C, Chu LL, Venkataramaian N, Flickinger SF, Kaysen J, Belshaw PJ, Sussman MR, Cerrina F (2004) Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res 32(17):5011–5018. doi:10.1093/nar/gkh793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943. doi:10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  • Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195. doi:10.1038/nature06879

    Article  PubMed  Google Scholar 

  • Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juarez P, Fernandez-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE 6(7):e21622. doi:10.1371/journal.pone.0021622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562. doi:10.1126/science.1187936

    Article  CAS  PubMed  Google Scholar 

  • Serber Z, Lowe R, Ubersax J, Chandran S (2012) Compositions and methods for the assembly of polynucleotides. 8,110,360 B2, Feb 7, 2012

    Google Scholar 

  • Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37(2):e16. doi:10.1093/nar/gkn991

    Article  PubMed  Google Scholar 

  • Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi:10.1186/1754-1611-2-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith HO, Hutchison CA 3rd, Pfannkoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100(26):15440–15445. doi:10.1073/pnas.2237126100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432(7020):1050–1054. doi:10.1038/nature03151

    Article  CAS  PubMed  Google Scholar 

  • Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24(6):1061–1068. doi:10.1016/j.copbio.2013.03.002

    Article  PubMed  Google Scholar 

  • Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6(2):e16765. doi:10.1371/journal.pone.0016765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C (2009a) Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4(9):e7002. doi:10.1371/journal.pone.0007002

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch M, Villalobos A, Gustafsson C, Minshull J (2009b) You’re one in a googol: optimizing genes for protein expression. J R Soc Interface/R Soc 6(Suppl 4):S467–S476. doi:10.1098/rsif.2008.0520.focus

    Article  CAS  Google Scholar 

  • Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3(1):38–43. doi:10.4161/bbug.3.1.18223

    PubMed  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109(3):E111–E118. doi:10.1073/pnas.1110740109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman L, Gore M, Ness J, Theodorou E, Gustafsson C, Minshull J (2013) Rapid, scarless cloning of gene fragments using the electra vector systemâ„¢. In: Genetic engineering & biotechnology news, vol 33. Mary Ann Liebert, Inc., New Rochelle, NY

    Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452. doi:10.1038/nchembio.580

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40(8):e55. doi:10.1093/nar/gkr1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Cai S, Hong A, You Q, Yu P, Sheng N, Srivannavit O, Muranjan S, Rouillard JM, Xia Y, Zhang X, Xiang Q, Ganesh R, Zhu Q, Matejko A, Gulari E, Gao X (2004) Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res 32(18):5409–5417. doi:10.1093/nar/gkh879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claes Gustafsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, K.G., Welch, M., Gustafsson, C. (2016). Leveraging Gene Synthesis, Advanced Cloning Techniques, and Machine Learning for Metabolic Pathway Engineering. In: Van Dien, S. (eds) Metabolic Engineering for Bioprocess Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-319-41966-4_4

Download citation

Publish with us

Policies and ethics