Skip to main content

Heterologous Pathway Engineering

  • Chapter
  • First Online:
Metabolic Engineering for Bioprocess Commercialization

Abstract

Heterologous pathways encompass both natural and artificial biosynthetic routes. Expression of a heterologous pathway expands the molecular diversity that can be realized by the host organism. The engineering efforts often benefit from a well-established technological platform of the host. This chapter discusses recent progress and key challenges in implementing heterologous pathways. Major topics include enzyme discovery for artificial pathway assembly, methods for studying and tuning the performance of a pathway, and examples of heterologous pathway engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper HS (ed) (2013) Systems metabolic engineering: Methods and protocols. In: Methods in molecular biology. Springer, New York

    Google Scholar 

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102:12678–12683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Andersson SG, Kurland CG (1990) Codon preferences in free-living microorganisms. Microbiol Rev 54:198–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253–257

    Article  CAS  PubMed  Google Scholar 

  • Arnold FH, Georgiou G (eds) (2003a) Directed enzyme evolution: screening and selection methods. In: Methods in molecular biology. Springer, New York

    Google Scholar 

  • Arnold FH, Georgiou G (eds) (2003b) Directed evolution library creation: methods and protocols. In: Methods in molecular biology. Springer, New York

    Google Scholar 

  • Ataumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808

    Article  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  PubMed  Google Scholar 

  • Bond-Watts BB, Bellerose RJ, Chang MC (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227

    Article  CAS  PubMed  Google Scholar 

  • Bounton ZL, Bennet GN, Rudolph FB (1996) Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015–3024

    Google Scholar 

  • Boyle PM, Silver PA (2012) Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 14:223–232

    Article  CAS  PubMed  Google Scholar 

  • Bunka DH, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4:588–596

    Article  CAS  PubMed  Google Scholar 

  • Conrado RJ, Varner JD, DeLisa MP (2008) Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr Opin Biotechnol 19:492–499

    Article  CAS  PubMed  Google Scholar 

  • Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnsek J, Tomsic N, Avbeij M, Gaber R, Koprivnjak T, Mori J, Glavnik V, Vovk I, Bencina M, Hodnik V, Anderluh G, Dueber JE, Jerala R, DeLisa DP (2014) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889

    Article  CAS  Google Scholar 

  • Corey EJ (1988) Retrosynthetic thinking-essentials and examples. Chem Soc Rev 17:111–133

    Article  CAS  Google Scholar 

  • Cox RSIII, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145

    PubMed  PubMed Central  Google Scholar 

  • Dambach MD, Winkler WC (2009) Expanding roles for metabolite-sensing regulatory RNAs. Curr Opin Microbiol 12:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel R (2002) Construction of environmental libraries for functional screening of enzyme activity. In: Brakmann S, Johnsson K (eds) Directed molecular evolution of proteins, Wiley-VCH,Weinheim

    Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474

    Article  CAS  PubMed  Google Scholar 

  • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF (ed) (2013) Microbial metagenomics, metatranscriptomics, and metaproteomics. Methods Enzymology. Academic Press, San Diego

    Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2:47–58

    Article  CAS  PubMed  Google Scholar 

  • Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  CAS  Google Scholar 

  • Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D- glucose. J Am Chem Soc 116:399–400

    Article  CAS  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    Article  CAS  PubMed  Google Scholar 

  • Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM (2014) Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 10:731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson DG, Yong L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  • Gillam EMJ, Copp JN, Ackerley DF (eds) (2014) Directed evolution library creation: methods and protocols, 2nd edn. In: Methods in molecular biology. Springer, New York

    Google Scholar 

  • Gowen CM, Fong SS (2010) Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 5:759–767

    Article  CAS  PubMed  Google Scholar 

  • Güell M, Yus E, Lluch-Senar M, Serrrano L (2011) Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 12:658–669

    Article  CAS  Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  PubMed  Google Scholar 

  • Gutman GA, Hatfield GW (1989) Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci USA 86:3699–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Ippen K, Miller JH, Scaife J, Beckwith J (1968) New controlling element in the Lac operon of E. coli. Nature 217:825–827

    Article  CAS  PubMed  Google Scholar 

  • Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353

    Article  CAS  PubMed  Google Scholar 

  • Ishii N et al (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597

    Article  CAS  PubMed  Google Scholar 

  • Jakočiūnas T, Jensen MK, Keasling JD (2016) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59

    Article  PubMed  CAS  Google Scholar 

  • Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY (2012) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Zhang C, Zhang J, Jin P, Zhang J, Du G, Chen J (2014) Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 98:3413–3424

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng. 3, doi:10.1186/1754-1611-3-4

    Google Scholar 

  • Kim J, Copley SD (2012) Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network. Proc Natl Acad Sci USA 109:E2856–E2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TY, Sohn SB, Kim HU, Lee SY (2008) Strategies for systems-level metabolic engineering. Biotechnol J 3:612–623

    Article  CAS  PubMed  Google Scholar 

  • Kim IK, Roldão A, Siewers V, Nielsen J (2012) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12:228–248

    Article  CAS  PubMed  Google Scholar 

  • Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  CAS  PubMed  Google Scholar 

  • Kromer JO, Nielsen L, Blank LM (eds) (2014) Metabolic flux analysis: methods and protocols. In: Methods in molecular biology. Springer, New York

    Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Park JM, Kim TY (2011) Application of metabolic flux analysis in metabolic engineering. Methods Enzymol 498:67–93

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012a) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 17:536–546

    Article  CAS  Google Scholar 

  • Lee H, DeLoache WC, Dueber JE (2012b) Spatial organization of enzymes for metabolic engineering. Metab Eng 14:242–251

    Article  CAS  PubMed  Google Scholar 

  • Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  PubMed  Google Scholar 

  • Liang JC, Bloom RJ, Smolke CD (2011) Engineering biological systems with synthetic RNA molecules. Mol Cell 43:915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  CAS  PubMed  Google Scholar 

  • Mao Q, Schunk T, Gerber B, Erni B (1995) A string of enzymes, purification and characterization of a fusion protein comprising the four subunits of the glucose phosphotransferase system of Escherichia coli. J Biol Chem 270:18295–18300

    Article  CAS  PubMed  Google Scholar 

  • Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202

    Article  CAS  PubMed  Google Scholar 

  • Michener JK, Thodey K, Liang JC, Smolke CD (2012) Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab Eng 14:212–222

    Article  CAS  PubMed  Google Scholar 

  • Minshull J, Stemmer WP (1999) Protein evolution by molecular breeding. Curr Opin Chem Biol 3:284–290

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Tobimatsu T, Hara T, Toraya T (1997) Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin-dependent diol dehydratase. J Biol Chem 272:32034–32041

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from the international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassal M, Mogi T, Karnik SS, Khorana HG (1987) Structure-function studies on bacteriorhodopsin III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J Biol Chem 262:9264–9270

    CAS  PubMed  Google Scholar 

  • Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998–12999

    Article  CAS  PubMed  Google Scholar 

  • Novoa EM, de Pouplans RL (2012) Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:574–581

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Palsson B, Zengler K (2010) The challenge of integrating multi-omic data sets. Nat Chem Biol 6:787–789

    Article  PubMed  Google Scholar 

  • Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR (2004) Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5:R87

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeifer-Sancar K, Mentz A, Rüchert C, Kalinowski J (2013) Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genom 14:888

    Article  CAS  Google Scholar 

  • Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42

    Article  CAS  PubMed  Google Scholar 

  • Quadri LE, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:1585–1595

    Article  CAS  PubMed  Google Scholar 

  • Rahman SA, Cuesta SM, Furnham N, Holliday GL, Thornton JM (2014) EC-BLAST: a tool to automatically search and compare enzyme reactions. Nat Methods 11:171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reetz MT (2011) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed Engl 50:138–174

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A (2005) Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed Engl 44:4192–4196

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Wang LW, Bocola M (2006) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45:1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Prasad S, Carballeira JD, Gumulya Y, Bocola M (2010) Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. J Am Chem Soc 132:9144–9152

    Article  CAS  PubMed  Google Scholar 

  • Reymond J-L (ed) (2006) Enzyme assays: high-throughput screening, genetic selection and fingerprinting. Wiley-VCH,Weinheim

    Google Scholar 

  • Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PLoS One 6:e19230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211–233

    Article  CAS  PubMed  Google Scholar 

  • Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195

    Article  PubMed  CAS  Google Scholar 

  • Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42

    Article  CAS  PubMed  Google Scholar 

  • Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid MB, Roth JR (1987) Gene location affects expression level in Salmonella typhimurium. J Bacteriol 169:2872–2875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Dannert C (2001) Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 40:13125–13136

    Article  CAS  PubMed  Google Scholar 

  • Sharan SK, Thomason LC, Kunzetsove SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protocol 4:206–223

    Article  CAS  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  CAS  PubMed  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 11:2905–2915

    Article  CAS  Google Scholar 

  • Shimizu R, Chou K, Orita I, Suzuki Y, Nakamura S, Fukui T (2013) Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. BMC Microbiol 13:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science. 329, 309–313

    Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analysis: Past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Solem C, Jensen PR (2002) Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa C, de Lorenzo V, Cebolla A (1997) Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology 143:2071–2078

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  CAS  PubMed  Google Scholar 

  • Stephanopouolos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San Diego

    Google Scholar 

  • Tyo KE, Nevoigt E, Stephanopoulos G (2011) Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation. Methods Enzymol 497:135–155

    Article  CAS  PubMed  Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009a) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009b) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–862

    Article  CAS  PubMed  Google Scholar 

  • Welch M, Villalobos A, Gustafsson C, Minshull J (2011) Designing genes for successful protein expression. Methods Enzymol 498:43–66

    Article  CAS  PubMed  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  PubMed  Google Scholar 

  • Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA 104:14283–14288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322:456–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann C, Lee SY (eds) (2012) Systems metabolic engineering. Springer, New York

    Google Scholar 

  • Wodicka L, Dong H, Mittmann M, Ho M-H, Lockhart DJ (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Woolston BM, Edgar S, Stephanopouos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288

    Article  CAS  PubMed  Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadila J, Teisan S, Schreyer B, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  PubMed  Google Scholar 

  • Zamboni N, Fendt SM, Rühl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Niu, W., Guo, J., Van Dien, S. (2016). Heterologous Pathway Engineering. In: Van Dien, S. (eds) Metabolic Engineering for Bioprocess Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-319-41966-4_3

Download citation

Publish with us

Policies and ethics