Skip to main content

Sleep Environment Recommendations for Future Spaceflight Vehicles

  • Conference paper
  • First Online:
Advances in Human Aspects of Transportation

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 484))

Abstract

Evidence from spaceflight and ground-based missions demonstrate that sleep loss and circadian desynchronization occur among astronauts, leading to reduced performance and, increased risk of injuries and accidents. We conducted a comprehensive literature review to determine the optimal sleep environment for lighting, temperature, airflow, humidity, comfort, noise, privacy and security in the sleep environment. We reviewed the design and use of sleep environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, military personnel, and ship operators. We also reviewed sleep quality from every NASA spaceflight mission. We found that the optimal sleep environment is cool, dark, quiet, and is perceived as safe and private. There are wide individual differences in the preferred sleep environment; therefore modifiable sleeping compartments are necessary to ensure all crewmembers are able to select personalized configurations for optimal sleep. We provide recommendations to aid in the design of deep space sleep chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klerman, E.B., et al.: Comparisons of the variability of three markers of the human circadian pacemaker. J. Biol. Rhythms 17(2), 181–193 (2002)

    Article  Google Scholar 

  2. Akerstedt, T., Gillberg, M.: Effects of sleep deprivation on memory and sleep latencies in connection with repeated awakenings from sleep. Psychophysiology 16(1), 49–52 (1979)

    Article  Google Scholar 

  3. Wilkinson, R.: Some factors influencing the effect of environmental stressors upon performance. Psychol. Bull. 72(4), 260–272 (1969)

    Article  MathSciNet  Google Scholar 

  4. Dijk, D.J., Czeisler, C.A.: Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci. Lett. 166(1), 63–68 (1994)

    Article  Google Scholar 

  5. Dijk, D.J., Czeisler, C.A.: Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15(5 Pt 1), 3526–3538 (1995)

    Google Scholar 

  6. Compton, D.W., Benson, C.D.: Living and Working in Space: A History of Skylab (1983)

    Google Scholar 

  7. Hoffman, S.J.: Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report. National Aeronautics and Space Administration (2002)

    Google Scholar 

  8. Basner, M., et al.: Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proc. Natl. Acad. Sci. U.S.A. 110(7), 2635–2640 (2013)

    Article  Google Scholar 

  9. Yan, X.W., England, M.E.: Design evaluation of an arctic research station from a user perspective. Environ. Behav. 33(3), 449–470 (2001)

    Article  Google Scholar 

  10. MSFC Skylab Structures: MSFC Skylab structures and mechanical systems mission evaluation. In: NASA TMX-64824, June. National Aeronautics and Space Administration (1974)

    Google Scholar 

  11. International Federation of Air Line Pilots’ Associations: In-flight flight crew rest facilities (2013)

    Google Scholar 

  12. Hacker, B.C., Grimwood, J.M.: On the Shoulders of Titans: A History of Project Gemini. NASA SP-4203. NASA Special Publication, 4203 (1977)

    Google Scholar 

  13. Caldwell, J.A., et al.: Is Fatigue a Problem in Army Aviation: The Results of a Survey of Aviators and Aircrews. US Army Aeromedical Research Laboratory (2000)

    Google Scholar 

  14. Green, P.S.: Special Report: Sleep Deprivation During Deployment and PTSD. https://vanwinkles.com/for-our-returning-troops-post-traumatic-sleep-disorders-are-the-new-ptsd (2015)

  15. Watt, C.G.: Aircraft Fatigue Management, in Air War College. Air University (2009)

    Google Scholar 

  16. Stuster, J.W.: Space station habitability: recommendations based on a systematic comparative analysis of analogous conditions. National Aeronautics and Space Administration (1986)

    Google Scholar 

  17. Carrere, S., Evans, G.W.: Life in an isolated and confined environment a qualitative study of the role of the designed environment. Environ. Behav. 26(6), 707–741 (1994)

    Article  Google Scholar 

  18. Hendrickx, B.: The Kamanin Diaries 1969–1971. J. Br. Interplanetary Soc. 55(9/10), 312–360 (2002)

    Google Scholar 

  19. Johnston, R.S.: Skylab Medical Experiments Altitude Test (SMEAT) (1973)

    Google Scholar 

  20. Koros, A., Wheelwright, C., Adam, S.: An evaluation of noise and its effects on shuttle crewmembers during STS-50/USML-1 (1993)

    Google Scholar 

  21. MacCallum, T.K., Poynter, J.: Factors affecting human performance in the isolated confined environment of biosphere 2. In: Third Annual Mid-Atlantic Human Factors Conference, pp. 82–87 (1995)

    Google Scholar 

  22. Rosekind, M.R., et al.: Crew Factors in Flight Operations XIII: A Survey of Fatigue Factors in Corporate/Executive Aviation Operations. Moffett Field, CA, NASA (2000)

    Google Scholar 

  23. Vander Ark, S.T., Holland, A.W., Wood, J.: La Chalupa-30: Lessons Subsea Learned Mission from a 30-day Analogue (1994)

    Google Scholar 

  24. Weiss, K., Feliot-Rippeault, M., Gaud, R.: Uses of places and setting preferences in a French Antarctic station. Environ. Behav. 39(2), 147–164 (2007)

    Article  Google Scholar 

  25. Willshire, K.F.: Human response to vibroacoustic environments of space vehicles. National Aeronautics and Space Administration, Langley Research Center (1984)

    Google Scholar 

  26. Harrison, A.A., et al.: Implications of Privacy Needs and Interpersonal Distancing Mechanisms for Space Station Design (1988)

    Google Scholar 

  27. Yan, X.W., et al.: A critical review of design and use of field tent shelters in polar regions. Polar Rec. 34(189), 113–122 (1998)

    Article  Google Scholar 

  28. Legler, R.D., Bennett, F.V.: Space Shuttle Missions Summary. National Aeronautics and Space Administration: Mission Operations. Johnson Space Center (2011)

    Google Scholar 

  29. Aeronautics, National, Administration, Space: Apollo 11 Mission Report. Houston, TX (1971)

    Google Scholar 

  30. National Aeronautics and Space Administration: Apollo 13 Mission Report. Houston, TX (1970)

    Google Scholar 

  31. Shepard, Jr., A.: Apollo 14 Mission Report (1972)

    Google Scholar 

  32. Allen, C., Denham, S.: International Space Station Acoustics—a status report. In: 41st International Conference on Environmental Systems (2011)

    Google Scholar 

  33. Broyan, Jr., J.L., Borrego, M.A., Bahr, J.F.: International Space Station USOS Crew Quarters Development. SAE International (2008)

    Google Scholar 

  34. Bluth, B., Helppie, M.: Soviet Space Stations as Analogs (1986)

    Google Scholar 

  35. European Space Agency: Mars 500: Isolation Study (2010)

    Google Scholar 

  36. Czeisler, C.A., Gooley, J.J.: Sleep and circadian rhythms in humans. Cold Spring Harb. Symp. Quant. Biol. 72, 579–597 (2007)

    Article  Google Scholar 

  37. Flynn-Evans, E.E., et al.: Circadian misalignment affects sleep and medication use before and during spaceflight. npj Microgravity. 2, 15019 (2016)

    Google Scholar 

  38. Lockley, S.W., et al.: Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29(2), 161–168 (2006)

    Google Scholar 

  39. Lockley, S.W.: Timed melatonin treatment for delayed sleep phase syndrome: the importance of knowing circadian phase. Sleep 28(10), 1214–1216 (2005)

    Google Scholar 

  40. Mien, I.H., et al.: Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction. PLoS ONE 9(5), e96532 (2014)

    Article  Google Scholar 

  41. Bierman, A., Figueiro, M.G., Rea, M.S.: Measuring and predicting eyelid spectral transmittance. J. Biomed. Opt. 16(6), 067011 (2011)

    Article  Google Scholar 

  42. Cho, J.R., et al.: Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms. Sleep Med. 14(12), 1422–1425 (2013)

    Article  Google Scholar 

  43. Dijk, D.-J., et al.: Sleep, circadian rhythms, and performance during space shuttle missions. In: The Neurolab Spacelab Mission: Neuroscience Research in Space, pp. 211–221 (2003)

    Google Scholar 

  44. Figueiro, M.G., Rea, M.S.: Short-wavelength light enhances cortisol awakening response in sleep-restricted adolescents. Int. J. Endocrinol. (2012)

    Google Scholar 

  45. Figueiro, M.G., Plitnick, B., Rea, M.S.: Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset. Nat. Sci. Sleep 6, 149 (2014)

    Article  Google Scholar 

  46. Grandner, M.A., et al.: Short wavelength light administered just prior to waking: a pilot study. Biol. Rhythm Res. 44(1), 13–32 (2013)

    Article  Google Scholar 

  47. Potter, J.J., et al.: Polar field tent shelters and well-being of users. Environ. Behav. 30(3), 398–420 (1998)

    Article  Google Scholar 

  48. Thompson, A., et al.: Effects of dawn simulation on markers of sleep inertia and post-waking performance in humans. Eur. J. Appl. Physiol. 114(5), 1049–1056 (2014)

    Article  Google Scholar 

  49. Zeitzer, J.M., et al.: Millisecond flashes of light phase delay the human circadian clock during sleep. J. Biol. Rhythms 29(5), 370–376 (2014)

    Article  Google Scholar 

  50. Arendt, J.: Biological rhythms during residence in polar regions. Chronobiol. Int. 29(4), 379–394 (2012)

    Article  Google Scholar 

  51. Halberg, F., et al.: Human biological rhythms during and after several months of isolation underground in natural caves. Bull. Natl. Speleol. Soc. 32, 89–115 (1970)

    Google Scholar 

  52. Kleitman, N.: Sleep and wakefulness. Am. J. Med. Sci. 249(2), 140 (1965)

    Article  Google Scholar 

  53. Miller, N.L., Nguyen, J.: Working the nightshift on the USS John C. Stennis: implications for enhancing warfighter effectiveness. In: Proceedings of the Human-Systems Integration Symposium (2003)

    Google Scholar 

  54. Siffre, M.: Biological rhythms, sleep, and wakefulness in prolonged confinement. In: ESA, Proceedings of the Colloquium on Space and Sea, pp. 53–68 (1988)

    Google Scholar 

  55. Duplessis, C.A., et al.: Submarine watch schedules: underway evaluation of rotating (contemporary) and compressed (alternative) schedules. Undersea Hyperb. Med. 34, 21–33 (2007)

    Google Scholar 

  56. Young, C.R., et al.: At-sea trial of 24-h-based submarine watchstanding schedules with high and low correlated color temperature light sources. J. Biol. Rhythms 30, 144–154 (2015)

    Article  Google Scholar 

  57. Barger, L.K., et al.: Sleep and cognitive function of crewmembers and mission controllers working 24-h shifts during a simulated 105-day spaceflight mission. Acta Astronaut. 93, 230–242 (2014)

    Article  Google Scholar 

  58. Flynn-Evans, E.E., et al.: Sleep duration, disruption and hypnotic use among 76 astronauts on short duration missions. In: NASA Human Research Program Meeting. Houston, TX (2012)

    Google Scholar 

  59. World Health Organization: Night Noise Guidelines for Europe (2009)

    Google Scholar 

  60. Fyhri, A., Aasvang, G.M.: Noise, sleep and poor health: modeling the relationship between road traffic noise and cardiovascular problems. Sci. Total Environ. 408, 4935–4942 (2010)

    Article  Google Scholar 

  61. Schmidt, F.P., et al.: Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults. Eur. Heart J. eht269 (2013)

    Google Scholar 

  62. Stanchina, M.L., et al.: The influence of white noise on sleep in subjects exposed to ICU noise. Sleep Med. 6(5), 423–428 (2005)

    Article  Google Scholar 

  63. Department of the Army, Manual 6-22.5: Combat and Operational Stress Control Manual for Leaders and Soldiers, p. 111. US Department of the Army, Washington, DC (2009)

    Google Scholar 

  64. Kawada, T., Suzuki, S.: Change in rapid eye movement (REM) sleep in response to exposure to all-night noise and transient noise. Arch. Environ. Health 54, 336–340 (1999)

    Article  Google Scholar 

  65. Muzet, A.: Environmental noise, sleep and health. Sleep Med. Rev. 11, 135–142 (2007)

    Article  Google Scholar 

  66. Rechtschaffen, A., Hauri, P., Zeitlin, M.: Auditory awakening thresholds in REM and NREM sleep stages. Percept. Mot. Skills 22(3), 927–942 (1966)

    Article  Google Scholar 

  67. Okamoto, K., et al.: A survey of bedroom and bed climate of the elderly in a nursing home. Appl. Human Sci. 17(3), 115–120 (1998)

    Article  Google Scholar 

  68. Okamoto-Mizuno, K., Tsuzuki, K., Mizuno, K.: Effects of head cooling on human sleep stages and body temperature. Int. J. Biometeorol. 48, 98–102 (2003)

    Article  Google Scholar 

  69. Haskell, E.H., et al.: The effects of high and low ambient temperatures on human sleep stages. Electroencephalogr. Clin. Neurophysiol. 51, 494–501 (1981)

    Article  Google Scholar 

  70. Lin, Z., Deng, S.: A study on the thermal comfort in sleeping environments in the subtropics—measuring the total insulation values for the bedding systems commonly used in the subtropics. Build. Environ. 43, 905–916 (2008)

    Article  Google Scholar 

  71. Häuplik-Meusburger, S.: Architecture for Astronauts: An Activity-Based Approach. Springer Science & Business Media (2011)

    Google Scholar 

  72. Van Someren, E.J.W., et al.: Circadian and age-related modulation of thermoreception and temperature regulation: Mechanisms and functional implications. Ageing Res. Rev. 1, 721–778 (2002)

    Article  Google Scholar 

  73. Kräuchi, K., et al.: Warm feet promote the rapid onset of sleep. Nature 401, 36–37 (1999)

    Article  Google Scholar 

  74. Raymann, R.J.E.M., Swaab, D.F., Van Someren, E.J.W.: Cutaneous warming promotes sleep onset. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1589–R1597 (2005)

    Article  Google Scholar 

  75. Raymann, R.J.E.M., Swaab, D.F., Van Someren, E.J.W.: Skin deep: enhanced sleep depth by cutaneous temperature manipulation. Brain 131(2), 500–513 (2008)

    Article  Google Scholar 

  76. Okamoto-Mizuno, K., et al.: Effects of partial humid heat exposure during different segments of sleep on human sleep stages and body temperature. Physiol. Behav. 83, 759–765 (2005)

    Article  Google Scholar 

  77. Daues, K.R.: A history of spacecraft environmental control and life support systems (2006)

    Google Scholar 

  78. Gothe, B., et al.: Effect of quiet sleep on resting and CO2-stimulated breathing in humans. J. Appl. Physiol. 50(4), 724–730 (1981)

    Google Scholar 

  79. Lo, Y.-L., et al.: Genioglossal muscle response to CO2 stimulation during NREM sleep. Sleep 29(4), 470 (2006)

    Google Scholar 

  80. Reite, M., et al.: Sleep physiology at high altitude. Electroencephalogr. Clin. Neurophysiol. 38(5), 463–471 (1975)

    Article  Google Scholar 

  81. Robin, E.D., et al.: Alveolar gas tensions, pulmonary ventilation and blood pH during physiologic sleep in normal subjects. J. Clin. Invest. 37(7), 981 (1958)

    Article  Google Scholar 

  82. Salvaggio, A., et al.: Effects of high-altitude periodic breathing on sleep and arterial oxyhaemoglobin saturation. Eur. Respir. J. 12(2), 408–413 (1998)

    Article  Google Scholar 

  83. Schiffman, P., et al.: Sleep deprivation decreases ventilatory response to CO2 but not load compensation. CHEST J. 84(6), 695–698 (1983)

    Article  Google Scholar 

  84. Selvamurthy, W., et al.: Sleep patterns at an altitude of 3500 metres. Int. J. Biometeorol. 30, 123–135 (1986)

    Article  Google Scholar 

  85. Strøm-Tejsen, P., et al.: The effects of bedroom air quality on sleep and next-day performance. In: Indoor Air (2015)

    Google Scholar 

  86. Szymusiak, R., Satinoff, E.: Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate. Physiol. Behav. 26, 687–690 (1981)

    Article  Google Scholar 

  87. Miller, J.C., Horvath, S.: Sleep at altitude. Aviat. Space Environ. Med. 48(7), 615–620 (1977)

    Google Scholar 

  88. Mizuno, K., Asano, K., Okudaira, N.: Sleep and respiration under acute hypobaric hypoxia. Japan. J. Physiol. 43, 161–175 (1993)

    Article  Google Scholar 

  89. Dietz, T.E.: An Altitude Tutorial. http://www.ismmed.org/np_altitude_tutorial.htm (2006)

  90. Muza, S.R., Fulco, C.S., Cymerman, A.: Altitude Acclimatization Guide. Army Research Institute of Environmental Medicine Natick MA Thermal and Mountain Medicine Division (2004)

    Google Scholar 

  91. Barash, I.A., et al.: Nocturnal oxygen enrichment of room air at 3800 meter altitude improves sleep architecture. High Altitude Med. Biol. 2(4), 525–533 (2001)

    Article  Google Scholar 

  92. Luks, A.M., et al.: Room oxygen enrichment improves sleep and subsequent day-time performance at high altitude. Respir. Physiol. 113(3), 247–258 (1998)

    Article  Google Scholar 

  93. Federal Aviation Administration: Flightcrew Member Duty and Rest Requirements (2011)

    Google Scholar 

  94. Matsangas, P., Shattuck, N.L., McCauley, M.E.: Sleep duration in rough sea conditions. Aerosp. Med. Hum. Perform. 86, 901–906 (2015)

    Article  Google Scholar 

  95. Petty, J.I.: Space Shuttle Life. http://spaceflight.nasa.gov/history/shuttle-mir/history/h-b-sslife.htm (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin E. Flynn-Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Caddick, Z.A., Gregory, K., Flynn-Evans, E.E. (2017). Sleep Environment Recommendations for Future Spaceflight Vehicles. In: Stanton, N., Landry, S., Di Bucchianico, G., Vallicelli, A. (eds) Advances in Human Aspects of Transportation. Advances in Intelligent Systems and Computing, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-319-41682-3_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41682-3_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41681-6

  • Online ISBN: 978-3-319-41682-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics