Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

Abstract

Trefftz methods are finite element-type schemes whose test and trial functions are (locally) solutions of the targeted differential equation. They are particularly popular for time-harmonic wave problems, as their trial spaces contain oscillating basis functions and may achieve better approximation properties than classical piecewise-polynomial spaces. We review the construction and properties of several Trefftz variational formulations developed for the Helmholtz equation, including least squares, discontinuous Galerkin, ultra weak variational formulation, variational theory of complex rays and wave based methods. The most common discrete Trefftz spaces used for this equation employ generalised harmonic polynomials (circular and spherical waves), plane and evanescent waves, fundamental solutions and multipoles as basis functions; we describe theoretical and computational aspects of these spaces, focusing in particular on their approximation properties. One of the most promising, but not yet well developed, features of Trefftz methods is the use of adaptivity in the choice of the propagation directions for the basis functions. The main difficulties encountered in the implementation are the assembly and the ill-conditioning of linear systems, we briefly survey some strategies that have been proposed to cope with these problems.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-41640-3_14.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-41640-3_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-41640-3_14.

  2. 2.

    A stable algorithm for point evaluations of ψ even for arguments close to 0 is provided by the MATLAB function expm1.

  3. 3.

    http://www.advanpix.com/.

References

  1. C.J. Alves, S.S. Valtchev, Numerical comparison of two meshfree methods for acoustic wave scattering. Eng. Anal. Boundary Elem. 29 (4), 371–382 (2005)

    Article  MATH  Google Scholar 

  2. M. Amara, R. Djellouli, C. Farhat, Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems. SIAM J. Numer. Anal. 47 (2), 1038–1066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Amara, H. Calandra, R. Dejllouli, M. Grigoroscuta-Strugaru, A stable discontinuous Galerkin-type method for solving efficiently Helmholtz problems. Comput. Struct. 106–107, 258–272 (2012)

    Article  Google Scholar 

  4. M. Amara, S. Chaudhry, J. Diaz, R. Djellouli, S.L. Fiedler, A local wave tracking strategy for efficiently solving mid- and high-frequency Helmholtz problems. Comput. Methods Appl. Mech. Eng. 276, 473–508 (2014)

    Article  MathSciNet  Google Scholar 

  5. P.F. Antonietti, I. Perugia, D. Zaliani, Schwarz domain decomposition preconditioners for plane wave discontinuous Galerkin methods, in Numerical Mathematics and Advanced Applications - ENUMATH 2013, ed. by A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso. Lecture Notes in Computational Science and Engineering, vol. 103 (Springer, Berlin, 2015), pp. 557–572

    Google Scholar 

  6. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.J. Astley, P. Gamallo, Special short wave elements for flow acoustics. Comput. Methods Appl. Mech. Eng. 194 (2–5), 341–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.K. Aziz, M.R. Dorr, R.B. Kellogg, A new approximation method for the Helmholtz equation in an exterior domain. SIAM J. Numer. Anal. 19 (5), 899–908 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.H. Barnett, T. Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227 (14), 7003–7026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.H. Barnett, T. Betcke, An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comput. 32 (3), 1417–1441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (01), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Bergman, Integral Operators in the Theory of Linear Partial Differential Equations. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23 (Springer, New York, 1969); Second revised printing

    Google Scholar 

  13. T. Betcke, J. Phillips, Adaptive plane wave discontinuous Galerkin method for Helmholtz problems, in Proceedings of the 10th International Conference on the Mathematical and Numerical Aspects of Waves, Vancouver, 2011, pp. 261–264

    Google Scholar 

  14. T. Betcke, J. Phillips, Approximation by dominant wave directions in plane wave methods. Technical Report, UCL (2012). Available at http://discovery.ucl.ac.uk/1342769/

    Google Scholar 

  15. T. Betcke, L.N. Trefethen, Reviving the method of particular solutions. SIAM Rev. 47 (3), 469–491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Betcke, M. Gander, J. Phillips, Block Jacobi relaxation for plane wave discontinuous Galerkin methods, in Domain Decomposition Methods in Science and Engineering XXI, ed. by J. Erhel, M.J. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund. Lecture Notes in Computational Science and Engineering, vol. 98 (Springer, Berlin, 2014), pp. 577–585

    Google Scholar 

  17. A. Buffa, P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation. M2AN, Math. Model. Numer. Anal. 42 (6), 925–940 (2008)

    Google Scholar 

  18. O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine, 1996

    Google Scholar 

  19. O. Cessenat, B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1), 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. S.N. Chandler-Wilde, S. Langdon, Acoustic scattering: high-frequency boundary element methods and unified transform methods, in Unified Transform Method for Boundary Value Problems: Applications and Advances, ed. by A. Fokas, B. Pelloni (SIAM, Philadelphia, 2015), pp. 181–226

    Google Scholar 

  21. S.N. Chandler-Wilde, I.G. Graham, S. Langdon, E. Spence, Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz, Solution of Helmholtz equation by Trefftz method. Int. J. Numer. Methods Eng. 32 (1), 63–78 (1991)

    Article  MATH  Google Scholar 

  23. C.I.R. Davis, B. Fornberg, A spectrally accurate numerical implementation of the Fokas transform method for Helmholtz-type PDEs. Complex Var. Elliptic Equ. 59, 564–577 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Deckers, B. Bergen, B. Van Genechten, D. Vandepitte, W. Desmet, An efficient wave based method for 2D acoustic problems containing corner singularities. Comput. Methods Appl. Mech. Eng. 241–244, 286–301 (2012)

    Article  MathSciNet  Google Scholar 

  25. E. Deckers et al., The wave based method: an overview of 15 years of research. Wave Motion 51 (4), 550–565 (2014); Innovations in Wave Modelling

    Google Scholar 

  26. W. Desmet, A wave based prediction technique for coupled vibro-acoustic analysis. Ph.D. thesis, KU Leuven, Belgium, 1998

    Google Scholar 

  27. W. Desmet et al., The wave based method, in “Mid-Frequency” CAE Methodologies for Mid-Frequency Analysis in Vibration and Acoustics (KU Leuven, Belgium, 2012), pp. 1–60

    Google Scholar 

  28. S.C. Eisenstat, On the rate of convergence of the Bergman-Vekua method for the numerical solution of elliptic boundary value problems. SIAM J. Numer. Anal. 11, 654–680 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. El Kacimi, O. Laghrouche, Improvement of PUFEM for the numerical solution of high-frequency elastic wave scattering on unstructured triangular mesh grids. Int. J. Numer. Methods Eng. 84 (3), 330–350 (2010)

    MathSciNet  MATH  Google Scholar 

  30. S. Esterhazy, J. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems, ed. by I. Graham, T. Hou, O. Lakkis, R. Scheichl. Lecture Notes in Computational Science and Engineering, vol. 83 (Springer, Berlin, 2011), pp. 285–324

    Google Scholar 

  31. G. Fairweather, A. Karageorghis, P.A. Martin, The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Boundary Elem. 27 (7), 759–769 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Farhat, I. Harari, L. Franca, The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190 (48), 6455–6479 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Farhat, I. Harari, U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (11), 1389–1419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Farhat, R. Tezaur, J. Toivanen, A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers. Int. J. Numer. Methods Eng. 78 (13), 1513–1531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. X.B. Feng, H.J. Wu, h p-Discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80 (4), 1997–2024 (2011)

    Google Scholar 

  36. L. Fox, P. Henrici, C. Moler, Approximations and bounds for eigenvalues of elliptic operators. SIAM J. Numer. Anal. 4, 89–102 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225, 1961–1984 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Gabard, Exact integration of polynomial-exponential products with application to wave-based numerical methods. Commun. Numer. Methods Eng. 25 (3), 237–246 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Gabard, P. Gamallo, T. Huttunen, A comparison of wave-based discontinuous Galerkin, ultra-weak and least-square methods for wave problems. Int. J. Numer. Methods Eng. 85 (3), 380–402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Gamallo, R.J. Astley, A comparison of two Trefftz-type methods: the ultra-weak variational formulation and the least squares method for solving shortwave 2D Helmholtz problems. Int. J. Numer. Methods Eng. 71, 406–432 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Gander, I. Graham, E. Spence, Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? Numer. Math. 131 (3), 567–614 (2015). doi:10.1007/s00211-015-0700-2. http://dx.doi.org/10.1007/s00211-015-0700-2

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Giladi, J.B. Keller, A hybrid numerical asymptotic method for scattering problems. J. Comput. Phys. 174 (1), 226–247 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Gillman, R. Djellouli, M. Amara, A mixed hybrid formulation based on oscillated finite element polynomials for solving Helmholtz problems. J. Comput. Appl. Math. 204 (2), 515–525 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. C.J. Gittelson, Plane wave discontinuous Galerkin methods. Master’s thesis, SAM, ETH Zürich, Switzerland, 2008. Available at http://www.sam.math.ethz.ch/~hiptmair/StudentProjects/Gittelson/thesis.pdf

    Google Scholar 

  45. C.J. Gittelson, R. Hiptmair, Dispersion analysis of plane wave discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 98 (5), 313–323 (2014)

    Article  MathSciNet  Google Scholar 

  46. C.J. Gittelson, R. Hiptmair, I. Perugia, Plane wave discontinuous Galerkin methods: analysis of the h-version. M2AN, Math. Model. Numer. Anal. 43 (2), 297–332 (2009)

    Google Scholar 

  47. C.I. Goldstein, The weak element method applied to Helmholtz type equations. Appl. Numer. Math. 2 (3–5), 409–426 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Grigoroscuta-Strugaru, M. Amara, H. Calandra, R. Djellouli, A modified discontinuous Galerkin method for solving efficiently Helmholtz problems. Commun. Comput. Phys. 11 (2), 335–350 (2012)

    Article  MathSciNet  Google Scholar 

  49. I. Harari, P. Barai, P.E. Barbone, Numerical and spectral investigations of Trefftz infinite elements. Int. J. Numer. Methods Eng. 46 (4), 553–577 (1999)

    Article  MATH  Google Scholar 

  50. P. Henrici, A survey of I. N. Vekua’s theory of elliptic partial differential equations with analytic coefficients. Z. Angew. Math. Phys. 8, 169–202 (1957)

    MathSciNet  MATH  Google Scholar 

  51. B. Heubeck, C. Pflaum, G. Steinle, New finite elements for large-scale simulation of optical waves. SIAM J. Sci. Comput. 31 (2), 1063–1081 (2008/09)

    Google Scholar 

  52. R. Hiptmair, I. Perugia, Mixed plane wave DG methods, in Domain Decomposition Methods in Science and Engineering XVIII, ed. by M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2008), pp. 51–62

    Google Scholar 

  53. R. Hiptmair, A. Moiola, I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49, 264–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Hiptmair, A. Moiola, I. Perugia, C. Schwab, Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz h p-dGFEM. Math. Model. Numer. Anal. 48, 727–752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Hiptmair, A. Moiola, I. Perugia, Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes. Appl. Numer. Math. 79, 79–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Hiptmair, A. Moiola, I. Perugia, Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version. Found. Comput. Math. (2015). doi:10.1007/s10208-015-9260-1

    MATH  Google Scholar 

  57. C.J. Howarth, New generation finite element methods for forward seismic modelling. Ph.D. thesis, University of Reading, UK, 2014. Available at http://www.reading.ac.uk/maths-and-stats/research/theses/maths-phdtheses.aspx

  58. C. Howarth, P. Childs, A. Moiola, Implementation of an interior point source in the ultra weak variational formulation through source extraction. J. Comput. Appl. Math. 271, 295–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Q. Hu, L. Yuan, A weighted variational formulation based on plane wave basis for discretization of Helmholtz equations. Int. J. Numer. Anal. Model. 11 (3), 587–607 (2014)

    MathSciNet  Google Scholar 

  60. T. Huttunen, P. Monk, J.P. Kaipio, Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182 (1), 27–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Huttunen, P. Gamallo, R. Astley, A comparison of two wave element methods for the Helmholtz problem. Commun. Numer. Methods Eng. 25 (1), 35–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. D. Huybrechs, S. Olver, Highly oscillatory quadrature, in Highly Oscillatory Problems. London Mathematical Society Lecture Note Series, vol. 366 (Cambridge University Press, Cambridge, 2009), pp. 25–50

    Google Scholar 

  63. F. Ihlenburg, I. Babuška, Solution of Helmholtz problems by knowledge-based FEM. Comput. Assist. Mech. Eng. Sci. 4, 397–416 (1997)

    MATH  Google Scholar 

  64. L.M. Imbert-Gérard, Interpolation properties of generalized plane waves. Numer. Math. (2015). doi:10.1007/s00211-015-0704-y

    MATH  Google Scholar 

  65. L.M. Imbert-Gérard, B. Després, A generalized plane-wave numerical method for smooth nonconstant coefficients. IMA J. Numer. Anal. 34 (3), 1072–1103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. S. Kapita, P. Monk, T. Warburton, Residual based adaptivity and PWDG methods for the Helmholtz equation. arXiv:1405.1957v1 (2014)

    Google Scholar 

  67. E. Kita, N. Kamiya, Trefftz method: an overview. Adv. Eng. Softw. 24 (1–3), 3–12 (1995)

    Article  MATH  Google Scholar 

  68. L. Kovalevsky, P. Ladevéze, H. Riou, The Fourier version of the variational theory of complex rays for medium-frequency acoustics. Comput. Methods Appl. Mech. Eng. 225/228, 142–153 (2012)

    Google Scholar 

  69. F. Kretzschmar, A. Moiola, I. Perugia, S.M. Schnepp, A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems. arXiv:1501.05253v2 (2015)

    Google Scholar 

  70. P. Ladevéze, H. Riou, On Trefftz and weak Trefftz discontinuous Galerkin approaches for medium-frequency acoustics. Comput. Methods Appl. Mech. Eng. 278, 729–743 (2014)

    Article  MathSciNet  Google Scholar 

  71. P. Ladevéze, A. Barbarulo, H. Riou, L. Kovalevsky, The variational theory of complex rays, in “Mid-Frequency” CAE Methodologies for Mid-Frequency Analysis in Vibration and Acoustics (KU Leuven, Belgium, 2012), pp. 155–217

    Google Scholar 

  72. O. Laghrouche, P. Bettes, R.J. Astley, Modelling of short wave diffraction problems using approximating systems of plane waves. Int. J. Numer. Methods Eng. 54, 1501–1533 (2002)

    Article  MATH  Google Scholar 

  73. O. Laghrouche, P. Bettess, E. Perrey-Debain, J. Trevelyan, Wave interpolation finite elements for Helmholtz problems with jumps in the wave speed. Comput. Methods Appl. Mech. Eng. 194 (2–5), 367–381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. F. Li, C.W. Shu, A local-structure-preserving local discontinuous Galerkin method for the Laplace equation. Methods Appl. Anal. 13 (2), 215–233 (2006)

    MathSciNet  MATH  Google Scholar 

  75. Z.C. Li, T.T. Lu, H.Y. Hu, A.H.D. Cheng, Trefftz and Collocation Methods (WIT Press, Southampton, 2008)

    MATH  Google Scholar 

  76. T. Luostari, Non-polynomial approximation methods in acoustics and elasticity. Ph.D. thesis, University of Eastern Finland, 2013. Available at http://venda.uef.fi/inverse/Frontpage/Publications/Theses

  77. T. Luostari, T. Huttunen, P. Monk, Improvements for the ultra weak variational formulation. Int. J. Numer. Methods Eng. 94 (6), 598–624 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  78. P.A. Martin, Multiple scattering, Encyclopedia of Mathematics and Its Applications, vol. 107 (Cambridge University Press, Cambridge, 2006); Interaction of time-harmonic waves with N obstacles

    Google Scholar 

  79. P. Mayer, J. Mandel, The finite ray element method for the Helmholtz equation of scattering: first numerical experiments. Technical Report 111, Center for Computational Mathematics, UC Denver, 1997. Available at http://ccm.ucdenver.edu/reports/

  80. J.M. Melenk, On generalized finite element methods. Ph.D. thesis, University of Maryland, 1995

    Google Scholar 

  81. J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1–4), 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  82. J.M. Melenk, S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49 (3), 1210–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. J.M. Melenk, A. Parsania, S. Sauter, General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57 (3), 536–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  84. A. Moiola, Approximation properties of plane wave spaces and application to the analysis of the plane wave discontinuous Galerkin method. Report 2009-06, SAM, ETH Zürich, 2009

    Google Scholar 

  85. A. Moiola, Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. Ph.D. thesis, Seminar for Applied Mathematics, ETH Zürich, 2011. Available at http://e-collection.library.ethz.ch/view/eth:4515

  86. A. Moiola, R. Hiptmair, I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62, 809–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  87. A. Moiola, R. Hiptmair, I. Perugia, Vekua theory for the Helmholtz operator. Z. Angew. Math. Phys. 62, 779–807 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  88. P. Monk, D. Wang, A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1/2), 121–136 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  89. P. Monk, J. Schöberl, A. Sinwel, Hybridizing Raviart-Thomas elements for the Helmholtz equation. Electromagnetics 30, 149–176 (2010)

    Article  Google Scholar 

  90. E. Moreno, D. Erni, C. Hafner, R. Vahldieck, Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. J. Opt. Soc. Am. A 19 (1), 101–111 (2002)

    Article  Google Scholar 

  91. N. Nguyen, J. Peraire, F. Reitich, B. Cockburn, A phase-based hybridizable discontinuous Galerkin method for the numerical solution of the Helmholtz equation. J. Comput. Phys. 290, 318–335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  92. M. Ochmann, The source simulation technique for acoustic radiation problems. Acta Acustica united with Acustica 81 (6), 512–527 (1995)

    MATH  Google Scholar 

  93. M.J. Peake, J. Trevelyan, G. Coates, Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems. Comput. Methods Appl. Mech. Eng. 259, 93–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  94. M.J. Peake, J. Trevelyan, G. Coates, The equal spacing of N points on a sphere with application to partition-of-unity wave diffraction problems. Eng. Anal. Boundary Elem. 40, 114–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  95. E. Perrey-Debain, Plane wave decomposition in the unit disc: convergence estimates and computational aspects. J. Comput. Appl. Math. 193 (1), 140–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  96. E. Perrey-Debain, O. Laghrouche, P. Bettess, Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (1816), 561–577 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  97. I. Perugia, P. Pietra, A. Russo, A plane wave virtual element method for the Helmholtz problem. arXiv:1505.04965v1 (2015)

    Google Scholar 

  98. B. Pluymers, B. van Hal, D. Vandepitte, W. Desmet, Trefftz-based methods for time-harmonic acoustics. Arch. Comput. Methods Eng. 14 (4), 343–381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  99. Q.H. Qin, Trefftz finite element method and its applications. Appl. Mech. Rev. 58 (5), 316–337 (2005)

    Article  Google Scholar 

  100. H. Riou, P. Ladevéze, B. Sourcis, The multiscale VTCR approach applied to acoustics problems. J. Comput. Acoust. 16 (4), 487–505 (2008)

    Article  MATH  Google Scholar 

  101. H. Riou, P. Ladevéze, B. Sourcis, B. Faverjon, L. Kovalevsky, An adaptive numerical strategy for the medium-frequency analysis of Helmholtz’s problem. J. Comput. Acoust. 20 (01), 1250001 (2012)

    Google Scholar 

  102. H. Riou, P. Ladevéze, L. Kovalevsky, The variational theory of complex rays: an answer to the resolution of mid-frequency 3d engineering problems. J. Sound Vib. 332 (8), 1947–1960 (2013)

    Article  Google Scholar 

  103. I.H. Sloan, R.S. Womersley, Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21 (1–2), 107–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  104. Y.S. Smyrlis, Density results with linear combinations of translates of fundamental solutions. J. Approx. Theory 161 (2), 617–633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  105. E.A. Spence, Wavenumber-explicit bounds in time-harmonic acoustic scattering. SIAM J. Math. Anal. 46 (4), 2987–3024 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  106. E. Spence, “When all else fails, integrate by parts”: an overview of new and old variational formulations for linear elliptic PDEs, in Unified Transform Method for Boundary Value Problems: Applications and Advances, ed. by A. Fokas, B. Pelloni (SIAM, Philadelphia, 2015), pp. 93–159

    Google Scholar 

  107. M. Stojek, Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Methods Eng. 41 (5), 831–849 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  108. T. Strouboulis, I. Babuška, R. Hidajat, The generalized finite element method for Helmholtz equation: theory, computation, and open problems. Comput. Methods Appl. Mech. Eng. 37–40, 4711–4731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  109. K.Y. Sze, G.H. Liu, H. Fan, Four- and eight-node hybrid-Trefftz quadrilateral finite element models for Helmholtz problem. Comput. Methods Appl. Mech. Eng. 199, 598–614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  110. R. Tezaur, L. Zhang, C. Farhat, A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems. Comput. Methods Appl. Mech. Eng. 197 (19–20), 1680–1698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  111. R. Tezaur, I. Kalashnikova, C. Farhat, The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber. Comput. Methods Appl. Mech. Eng. 268, 126–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  112. E. Trefftz, Ein Gegenstuck zum Ritzschen Verfahren, in Proceedings of the 2nd International Congress for Applied Mechanics, Zurich, 1926, pp. 131–137

    Google Scholar 

  113. I. Tsukerman, A class of difference schemes with flexible local approximation. J. Comput. Phys. 211 (2), 659–699 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  114. I.N. Vekua, New Methods for Solving Elliptic Equations (North Holland, Amsterdam, 1967); Translation from Russian edition (1948)

    Google Scholar 

  115. D. Wang, R. Tezaur, J. Toivanen, C. Farhat, Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons. Int. J. Numer. Methods Eng. 89 (4), 403–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  116. R.S. Womersley, I.H. Sloan, Interpolation and cubature on the sphere. http://web.maths.unsw.edu.au/~rsw/Sphere

  117. S.F. Wu, The Helmholtz Equation Least Squares Method. Modern Acoustics and Signal Processing (Springer, New York, 2015)

    Book  Google Scholar 

  118. L. Yuan, Q. Hu, A solver for Helmholtz system generated by the discretization of wave shape functions. Adv. Appl. Math. Mech. 5 (6), 791–808 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  119. E. Zheng, F. Ma, D. Zhang, A least-squares non-polynomial finite element method for solving the polygonal-line grating problem. J. Math. Anal. Appl. 397 (2), 550–560 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  120. E. Zheng, F. Ma, D. Zhang, A least-squares finite element method for solving the polygonal-line arc-scattering problem. Appl. Anal. 93 (6), 1164–1177 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  121. O. Zienkiewicz, Trefftz type approximation and the generalized finite element method- history and development. Comput. Assist. Mech. Eng. Sci. 4 (3), 305–316 (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hiptmair .

Editor information

Editors and Affiliations

Appendix: Condition Numbers of Plane Wave Mass Matrices

Appendix: Condition Numbers of Plane Wave Mass Matrices

Given a wave number k > 0 and \(p \in \mathbb{N}\) distinct unit vectors \(\mathbf{d}_{\ell} \in \mathbb{R}^{n}\),  = 1, , p, and a domain \(K \subset \mathbb{R}^{n}\) with barycentre x K , the symmetric positive definite plane wave element mass matrix M K on K is defined as

$$\displaystyle{ \mathbf{M}_{K}:= \left (\int \nolimits _{K}e^{\mathrm{i}k\mathbf{d}_{\ell}\cdot (\mathbf{x}-\mathbf{x}_{K})} \cdot e^{-\mathrm{i}k\mathbf{d}_{m}\cdot (\mathbf{x}-\mathbf{x}_{K})}\,\mathrm{d}V \right )_{\ell,m=1}^{p}. }$$

For n = 2 we computed spectral condition numbers of M K for equi-spaced directions d  = (cos(2π ℓp), sin(2π ℓp)),  = 0, , p − 1. For n = 3 we choose the directions d as the “minimum norm points” according to Sloan and Womersley [103, 116]. These points are indexed by a level \(q \in \mathbb{N}\) and p = (q + 1)2. The spectral condition numbers are plotted in Fig. 1 for n = 2, K = (−1, 1)2, and Fig. 2 for n = 3, K = (−1, 1)3. They have been computed with MATLAB using the high-precision arithmetic (200 decimal digits) provided by the Advanpix Multi-Precision Toolbox.Footnote 3

Fig. 1
figure 1

Condition numbers of element mass matrices on the square (−1, 1)2

Fig. 2
figure 2

Condition numbers of element mass matrices on the cube (−1, 1)3

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hiptmair, R., Moiola, A., Perugia, I. (2016). A Survey of Trefftz Methods for the Helmholtz Equation. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_8

Download citation

Publish with us

Policies and ethics