Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

Abstract

We introduce two robust DPG methods for transient convection-diffusion problems. Once a variational formulation is selected, the choice of test norm critically influences the quality of a particular DPG method. It is desirable that a test norm produce convergence of the solution in a norm equivalent to L 2 while producing optimal test functions that can be accurately computed and maintaining good conditioning of the optimal test function solve on highly adaptive meshes. Two such robust norms are introduced and proven to guarantee close to L 2 convergence of the primary solution variable. Numerical experiments demonstrate robust convergence of the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Aliabadi, T.E. Tezduyar, Space-time finite element computation of compressible flows involving moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 107 (1–2), 209–223 (1993)

    Article  MATH  Google Scholar 

  2. J.H. Argyris, D.W. Scharpf, Finite elements in time and space. Nucl. Eng. Des. 10 (4), 456–464 (1969)

    Article  Google Scholar 

  3. C. Carstensen, L.F. Demkowicz, J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations. Technical Report 15-18, ICES (2015)

    Google Scholar 

  4. J.L. Chan, A DPG method for convection-diffusion problems. Ph.D. thesis, University of Texas at Austin, 2013

    Google Scholar 

  5. J.L. Chan, J. Gopalakrishnan, L.F. Demkowicz, Global properties of DPG test spaces for convection-diffusion problems. Technical Report 13-05, ICES (2013)

    Google Scholar 

  6. J.L. Chan, J.A. Evans, W. Qiu, A dual Petrov-Galerkin finite element method for the convection–diffusion equation. Comput. Math. Appl. 68 (11), 1513–1529 (2014). Minimum Residual and Least Squares Finite Element Methods

    Google Scholar 

  7. J. Chan, N. Heuer, T. Bui-Thanh, L. Demkowicz, A robust DPG method for convection-dominated diffusion problems II: adjoint boundary conditions and mesh-dependent test norms. Comput. Math. Appl. 67 (4), 771–795 (2014). High-order Finite Element Approximation for Partial Differential Equations

    Google Scholar 

  8. A. Cohen, W. Dahmen, G. Welper, Adaptivity and variational stabilization for convection-diffusion equations. ESAIM Math. Model. Numer. Anal. 46 (5), 1247–1273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Dahmen, C. Huang, C. Schwab, G. Welper, Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (5), 2420–2445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. L.F. Demkowicz, Various variational formulations and closed range theorem. Technical Report 15-03, ICES (2015)

    Google Scholar 

  11. L.F. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part II: optimal test functions. Numer. Methods Partial Differ. Equ. 27, 70–105 (2011)

    MathSciNet  MATH  Google Scholar 

  12. L.F. Demkowicz, J. Gopalakrishnan, An overview of the DPG method, in Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations ed. by X. Feng, O. Karakashian, Y. Xing. IMA Volumes in Mathematics and Its Applications, vol. 157 (Springer, Cham, 2014), pp. 149–180

    Google Scholar 

  13. L.F. Demkowicz, J. Gopalakrishnan, Discontinuous Petrov-Galerkin (DPG) method. Technical Report 15-20, ICES (2015)

    Google Scholar 

  14. L.F. Demkowicz, N. Heuer, Robust DPG method for convection-dominated diffusion problems. SIAM J. Numer. Anal. 51 (5), 1514–2537 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. L.F. Demkowicz, J. Gopalakrishnan, A.H. Niemi, A class of discontinuous Petrov-Galerkin methods. Part III: adaptivity. Appl. Numer. Math. 62 (4), 396–427 (2012)

    MathSciNet  MATH  Google Scholar 

  16. T.E. Ellis, L.F. Demkowicz, J.L. Chan, Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems. Comput. Math. Appl. 68 (11), 1530–1549 (2014)

    Article  MathSciNet  Google Scholar 

  17. I. Fried, Finite-element analysis of time-dependent phenomena. AIAA J. 7 (6), 1170–1173 (1969)

    Article  MATH  Google Scholar 

  18. J. Gopalakrishnan, W. Qiu, An analysis of the practical DPG method. Math. Comput. 83 (286), 537–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. T.J.R. Hughes, J.R. Stewart, A space-time formulation for multiscale phenomena. J. Comput. Appl. Math. 74 (1–2), 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Kaczkowski, The method of finite space-time elements in dynamics of structures. J. Tech. Phys. 16 (1), 69–84 (1975)

    Google Scholar 

  21. C.M. Klaij, J.J.W. van der Vegt, H. van der Ven, Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations. J. Comput. Phys. 217 (2), 589–611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Moro, N.C. Nguyen, J. Peraire, A hybridized discontinuous Petrov-Galerkin scheme for compressible flows. Master’s thesis, Massachusetts Institute of Technology, 2011

    Google Scholar 

  23. A.H. Niemi, N.O. Collier, V.M. Calo, Automatically stable discontinuous Petrov-Galerkin methods for stationary transport problems: quasi-optimal test space norm. Comput. Math. Appl. 66 (10), 2096–2113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.H. Niemi, N.O. Collier, V.M. Calo, Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension. J. Comput. Sci. 4 (3), 157–163 (2013)

    Article  Google Scholar 

  25. J.T. Oden, A general theory of finite elements. II. Applications. Int. J. Numer. Methods Eng. 1 (3), 247–259 (1969)

    Article  MATH  Google Scholar 

  26. S. Rhebergen, B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231 (11), 4185–4204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Rhebergen, B. Cockburn, J.J.W. Van Der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 339–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. H.G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24, 2nd edn. (Springer, Berlin, 2008)

    Google Scholar 

  29. T.E. Tezduyar, M. Behr, J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94 (3), 339–351 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.J.W. van der Vegt, H. van der Ven, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. General formulation. J. Comput. Phys. 182 (2), 546–585 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Demkowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ellis, T., Chan, J., Demkowicz, L. (2016). Robust DPG Methods for Transient Convection-Diffusion. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_6

Download citation

Publish with us

Policies and ethics