Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

Abstract

In this paper we discuss the adjoint stabilised finite element method introduced in Burman (SIAM J Sci Comput 35(6):A2752–A2780, 2013) and how it may be used for the computation of solutions to problems for which the standard stability theory given by the Lax-Milgram Lemma or the Babuska-Brezzi Theorem fails. We pay particular attention to ill-posed problems that have some conditional stability property and prove (conditional) error estimates in an abstract framework. As a model problem we consider the elliptic Cauchy problem and provide a complete numerical analysis for this case. Some numerical examples are given to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Alessandrini, Strong unique continuation for general elliptic equations in 2D. J. Math. Anal. Appl. 386 (2), 669–676 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alessandrini, L. Rondi, E. Rosset, S. Vessella, The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25 (12), 123004, 47 (2009)

    Google Scholar 

  3. S. Andrieux, T.N. Baranger, A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional. Inverse Prob. 22 (1), 115–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Azaïez, F. Ben Belgacem, H. El Fekih, On Cauchy’s problem. II. Completion, regularization and approximation. Inverse Prob. 22 (4), 1307–1336 (2006)

    Google Scholar 

  5. F. Ben Belgacem, Why is the Cauchy problem severely ill-posed? Inverse Prob. 23 (2), 823–836 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Prob. 21 (3), 1087–1104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation. Inverse Prob. 22 (2), 413–430 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Bourgeois, J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data. Inverse Prob. 26 (9), 095016, 21 (2010)

    Google Scholar 

  9. L. Bourgeois, J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains. Appl. Anal. 89 (11), 1745–1768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: elliptic equations. SIAM J. Sci. Comput. 35 (6), A2752–A2780 (2013)

    MathSciNet  MATH  Google Scholar 

  11. E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem. Math. Comput. ArXiv e-prints (2014). http://dx.doi.org/10.1090/mcom/3092

  12. E. Burman, Error estimates for stabilized finite element methods applied to ill-posed problems. C. R. Math. Acad. Sci. Paris 352 (7–8), 655–659 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part II: hyperbolic equations. SIAM J. Sci. Comput. 36 (4), A1911–A1936 (2014)

    MathSciNet  MATH  Google Scholar 

  14. E. Burman, M.A. Fernández, P. Hansbo, Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44 (3), 1248–1274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Capuzzo-Dolcetta, S. Finzi Vita, Finite element approximation of some indefinite elliptic problems. Calcolo 25 (4), 379–395 (1989/1988)

    Google Scholar 

  16. C. Chainais-Hillairet, J. Droniou, Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31 (1), 61–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Chakib, A. Nachaoui, Convergence analysis for finite element approximation to an inverse Cauchy problem. Inverse Prob. 22 (4), 1191–1206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Cockburn, C. Johnson, C.-W. Shu, E. Tadmor, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697 (Springer, Berlin; Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, 1998). Papers from the C.I.M.E. Summer School held in Cetraro, June 23–28, 1997, ed. by A. Quarteroni, Fondazione C.I.M.E.. [C.I.M.E. Foundation]

    Google Scholar 

  19. J. Dardé, A. Hannukainen, N. Hyvönen, An H div -based mixed quasi-reversibility method for solving elliptic Cauchy problems. SIAM J. Numer. Anal. 51 (4), 2123–2148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Brenner, Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41 (1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Brenner, K. Wang, J. Zhao, Poincaré-Friedrichs inequalities for piecewise H 2 functions. Numer. Funct. Anal. Optim. 25 (5-6), 463–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. R.S. Falk, P.B. Monk, Logarithmic convexity for discrete harmonic functions and the approximation of the Cauchy problem for Poisson’s equation. Math. Comput. 47 (175), 135–149 (1986)

    MathSciNet  MATH  Google Scholar 

  23. J. Hadamard, Sur les problèmes aux derivées partielles et leur signification physique. Bull. Univ. Princeton 13, 49–52 (1902)

    MathSciNet  Google Scholar 

  24. W. Han, J. Huang, K. Kazmi, Y. Chen, A numerical method for a Cauchy problem for elliptic partial differential equations. Inverse Prob. 23 (6), 2401–2415 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Han, L. Ling, T. Takeuchi, An energy regularization for Cauchy problems of Laplace equation in annulus domain. Commun. Comput. Phys. 9 (4), 878–896 (2011)

    Article  MathSciNet  Google Scholar 

  26. M.V. Klibanov, F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace’s equation. SIAM J. Appl. Math. 51 (6), 1653–1675 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Lattès, J.-L. Lions, The Method of Quasi-Reversibility. Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics, vol. 18 (Translated from the French edition and edited by Richard Bellman). (American Elsevier Publishing Co., New York, 1969)

    Google Scholar 

  28. H.-J. Reinhardt, H. Han, D.N. Hào, Stability and regularization of a discrete approximation to the Cauchy problem for Laplace’s equation. SIAM J. Numer. Anal. 36 (3), 890–905 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.N. Tikhonov, V.Y. Arsenin, in Solutions of Ill-Posed Problems (Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics). (V. H. Winston and Sons, Washington, DC; Wiley, New York/London, 1977)

    Google Scholar 

  30. C. Wang, J. Wang, A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form. ArXiv e-prints (October 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Burman .

Editor information

Editors and Affiliations

Appendix

Appendix

We will here give a proof that the inf-sup stability (22) holds also for the stabilisation (18). We do not track the depedence on γ D and γ S .

Proposition 3

Let A h [(⋅,⋅),(⋅,⋅)] be defined by  (13) with a h (⋅,⋅), s W (⋅,⋅) and s V (⋅,⋅) defined by Eq.  (14) (16) and  (18) (or  (19) for s W (⋅,⋅)). Then the inf-sup condition  (22) is satisfied for the semi-norm  (30) .

Proof

We must prove that the L 2-stabilisation of the jump of the Laplacian gives sufficient control for the inf-sup stability of \(\mathcal{L}u_{h}\) evaluated elementwise. It is well known [14] that for the quasi-interpolation operator defined in each node x i by

$$\displaystyle{(I_{os}\varDelta u_{h})(x_{i}):= N_{i}^{-1}\sum _{ \{K:x_{i}\in K\}}\varDelta u_{h}(x_{i})\vert _{K},}$$

N i : = card{K: x i  ∈ K} the following discrete interpolation result holds

$$\displaystyle{ \|h(\varDelta u_{h} - I_{os}\varDelta u_{h})\|_{h}\leqslant C_{os}s_{V }^{S}(u_{ h},u_{h})^{\frac{1} {2} } }$$
(58)

as well as following the stabilities obtained using trace inequalities, inverse inequalities and the L 2-stability of I os ,

$$\displaystyle{ \|h^{\frac{3} {2} }I_{os}\varDelta u_{h}\|_{\mathcal{F}} +\| h^{\frac{5} {2} }\partial _{n}I_{os}\varDelta u_{h}\|_{\mathcal{F}} +\| hI_{os}\varDelta u_{h}\|_{h} + \vert h^{2}I_{os}\varDelta u_{h}\vert _{s_{ X}}\lesssim \|h\varDelta u_{h}\|_{h}. }$$
(59)

First observe that by taking (v h , w h ) = (u h , z h ) we have

$$\displaystyle{\vert u_{h}\vert _{s_{V }}^{2} + \vert z_{ h}\vert _{s_{W}}^{2} = A_{ h}[(u_{h},z_{h}),(u_{h},z_{h})].}$$

Now let \(w_{h}^{\mathcal{L}} = h^{2}I_{os}\mathcal{L}u_{h} = h^{2}(I_{os}\varDelta u_{h} + cu_{h})\), \(v_{h}^{\mathcal{L}} = h^{2}I_{os}\mathcal{L}^{{\ast}}z_{h}\). Using (59) it is straightforward to show that

$$\displaystyle{ \|h^{\frac{3} {2} }I_{os}\mathcal{L}u_{h}\|_{\mathcal{F}} +\| h^{\frac{5} {2} }\partial _{n}I_{os}\mathcal{L}u_{h}\|_{\mathcal{F}} +\| hI_{os}\mathcal{L}u_{h}\|_{h} + \vert h^{2}I_{os}\mathcal{L}u_{h}\vert _{s_{ X}}\leqslant \tilde{C}_{os}\|h\mathcal{L}u_{h}\|_{h}. }$$
(60)

Now observe that (for a suitably chosen orientation of the normal on interior faces)

$$\displaystyle\begin{array}{rcl} a_{h}(u_{h},w_{h}^{\mathcal{L}})& =& \|h\mathcal{L}u_{ h}\|_{h}^{2} + (\mathcal{L}u_{ h},h^{2}(I_{ os}\mathcal{L}u_{h} -\mathcal{L}u_{h}))_{h} + \left < [\![\partial _{n}u_{h}]\!],h^{2}I_{ os}\mathcal{L}u_{h}\right >_{\mathcal{F}_{I}} {}\\ & & \quad + \left < \partial _{n}u_{h},h^{2}I_{ os}\mathcal{L}u_{h}\right >_{\varGamma _{N}} + \left < \partial _{n}h^{2}I_{ os}\mathcal{L}u_{h},u_{h}\right >_{\varGamma _{D}} {}\\ & \geqslant & \frac{1} {2}\|h\mathcal{L}u_{h}\|_{h}^{2} - 2\|h^{2}(I_{ os}\mathcal{L}u_{h} -\mathcal{L}u_{h})\|_{h}^{2} - 2\tilde{C}_{ os}^{-2}s_{ V }^{D}(u_{ h},u_{h}) {}\\ & & \geqslant \frac{1} {2}\|h\mathcal{L}u_{h}\|_{h}^{2} - 2C_{ os}^{2}s_{ V }^{S}(u_{ h},u_{h}) - 2\tilde{C}_{os}^{-2}s_{ V }^{D}(u_{ h},u_{h}) {}\\ & & \phantom{\geqslant \frac{1} {2}\|h\mathcal{L}u_{h}\|_{h}^{2} - 2C_{ os}^{2}s_{ V }^{S}(u_{ h},}\geqslant \frac{1} {2}\|h\mathcal{L}u_{h}\|_{h}^{2} - 2(C_{ os}^{2} +\tilde{ C}_{ os}^{-2})\vert u_{ h}\vert _{s_{V }}^{2} {}\\ \end{array}$$

and

$$\displaystyle{s_{W}(z_{h},w_{h}^{\mathcal{L}})\geqslant -\tilde{ C}_{ os}^{-2}\vert z_{ h}\vert _{s_{W}}^{2} -\frac{1} {4}\|h\mathcal{L}u_{h}\|_{h}^{2}.}$$

Similarly

$$\displaystyle{a_{h}(v_{h}^{\mathcal{L}},z_{ h})\geqslant \frac{1} {2}\|h\mathcal{L}^{{\ast}}z_{ h}\|_{h}^{2} - 2(C_{ os}^{2} +\tilde{ C}_{ os}^{-2})\vert z_{ h}\vert _{s_{W}}^{2}}$$

and

$$\displaystyle{s_{V }(u_{h},v_{h}^{\mathcal{L}})\geqslant -\tilde{ C}_{ os}^{-2}\vert u_{ h}\vert _{s_{V }}^{2} -\frac{1} {4}\|h\mathcal{L}^{{\ast}}z_{ h}\|_{h}^{2}.}$$

It follows that for some c 1, c 2 > 0 there holds

$$\displaystyle{\vert (u_{h},z_{h})\vert _{\mathcal{L}}^{2}\lesssim A_{ h}[(u_{h},z_{h}),(u_{h} + c_{1}w_{h}^{\mathcal{L}},z_{ h} + c_{2}v_{h}^{\mathcal{L}})].}$$

We conclude by observing that by inverse inequalities and (60) we have the stability

$$\displaystyle{\vert (u_{h} + c_{1}w_{h}^{\mathcal{L}},z_{ h} + c_{2}v_{h}^{\mathcal{L}})\vert _{ \mathcal{L}}\lesssim \vert (u_{h},z_{h})\vert _{\mathcal{L}}.}$$

 □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burman, E. (2016). Stabilised Finite Element Methods for Ill-Posed Problems with Conditional Stability. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_4

Download citation

Publish with us

Policies and ethics