Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

Abstract

We review basic design principles underpinning the construction of the mimetic finite difference and a few finite volume and finite element schemes for mixed formulations of elliptic problems. For a class of low-order mixed-hybrid schemes, we show connections between these principles and prove that the consistency and stability conditions must lead to a member of the mimetic family of schemes regardless of the selected discretization framework. Finally, we give two examples of using flexibility of the mimetic framework: derivation of arbitrary-order schemes and inexpensive convergent schemes for nonlinear problems with small diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Antonietti, L.B. da Veiga, M. Verani, A mimetic discretization of elliptic obstacle problems. Math. Comput. 82, 1379–1400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. P.F. Antonietti, N. Bigoni, M. Verani, Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56 (1), 14–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. P.F. Antonietti, L.B. da Veiga, N. Bigoni, M. Verani, Mimetic finite differences for nonlinear and control problems. Math. Models Methods Appl. Sci. 24 (08), 1457–1493 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Arbogast, C. Dawson, P. Keenan, M. Wheeler, I. Yotov, Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19 (2), 404–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bochev, J.M. Hyman, Principle of mimetic discretizations of differential operators, in Compatible Discretizations. Proceedings of IMA Hot Topics Workshop on Compatible Discretizations, ed. by D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, M. Shashkov. IMA vol. 142 (Springer, Berlin, 2006)

    Google Scholar 

  6. J. Bonelle, Compatible discrete operator schemes on polyhedral meshes for elliptic and stokes equations. Ph.D. thesis. Technical report, University Paris-Est (2015)

    Google Scholar 

  7. J. Bonelle, A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM Math. Model. Numer. Anal. 48, 553–581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (5), 1872–1896 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Brezzi, A. Buffa, K. Lipnikov, Mimetic finite differences for elliptic problems. Math. Model. Numer. Anal. 43 (2), 277–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Brezzi, A. Buffa, G. Manzini, Mimetic scalar products of discrete differential forms. J. Comput. Phys. 257, Part B(0), 1228–1259 (2014)

    Google Scholar 

  11. F. Brezzi, R. Falk, L. Marini, Basic principle of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48 (1), 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Cangiani, G. Manzini, Flux reconstruction and pressure post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Eng. 197 (9–12), 933–945 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Cangiani, G. Manzini, A. Russo, Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47 (4), 2612–2637 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Cangiani, F. Gardini, G. Manzini, Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200 (9–12), 1150–1160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Cangiani, E. Georgoulis, P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (10), 2009–2041 (2014)

    Google Scholar 

  16. J. Castor, Radiation Hydrodynamics (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  17. B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Coudière, G. Manzini, The discrete duality finite volume method for convection-diffusion problems. SIAM J. Numer. Anal. 47 (6), 4163–4192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. L.B. da Veiga, A mimetic finite difference method for linear elasticity. ESAIM Math. Model. Numer. Anal. 44 (2), 231–250 (2010)

    Article  MATH  Google Scholar 

  20. L.B. da Veiga, D. Mora, A mimetic discretization of the Reissner–Mindlin plate bending problem. Numer. Math. 117 (3), 425–462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.B. da Veiga, V. Gyrya, K. Lipnikov, G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (19), 7215–7232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.B. da Veiga, K. Lipnikov, G. Manzini, Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48 (4), 1419–1443 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. L.B. da Veiga, J. Droniou, G. Manzini, A unified approach to handle convection term in finite volumes and mimetic discretization methods for elliptic problems. IMA J. Numer. Anal. 31 (4), 1357–1401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. L.B. da Veiga, K. Lipnikov, G. Manzini, The Mimetic Finite Difference Method. Modeling, Simulations and Applications, vol. 11, 1st edn. (Springer, New York, 2014), 408 pp.

    Google Scholar 

  25. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications (Springer, Heidelberg, 2011)

    Google Scholar 

  26. D.A. Di Pietro, A. Ern, Hybrid high-order methods for variable diffusion problems on general meshes. C. R. Math. 353, 31–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Di Pietro, A. Ern, S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (4), 461–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Domelevo, P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM Math. Model. Numer. Anal. 39 (6), 1203–1249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (08), 1575–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Droniou, R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 1 (105), 35–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Droniou, R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numer. Math. 132, 721–766 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Droniou, R. Eymard, T. Gallouët, R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2), 265–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Droniou, R. Eymard, T. Gallouët, R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (13), 2395–2432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. G.M. Dusinberre, Heat transfer calculations by numerical methods. J. Am. Soc. Nav. Eng. 67 (4), 991–1002 (1955)

    Google Scholar 

  35. G.M. Dusinberre, Heat-Transfer Calculation by Finite Differences (International Textbook, Scranton, 1961)

    Google Scholar 

  36. R. Eymard, T. Gallouët, R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (4), 1009–1043 (2010)

    MATH  Google Scholar 

  37. V. Gyrya, K. Lipnikov, G. Manzini, The arbitrary order mixed mimetic finite difference method for the diffusion equation. Math. Model. Numer. Anal. (2015, accepted)

    Google Scholar 

  38. J. Hyman, M. Shashkov, The approximation of boundary conditions for mimetic finite difference methods. Comput. Math. Appl. 36, 79–99 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Hyman, M. Shashkov, Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion. Prog. Electromagn. Res. 32, 89–121 (2001)

    Article  Google Scholar 

  40. J. Hyman, M. Shashkov, S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132 (1), 130–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Lipnikov, J. Moulton, D. Svyatskiy, A multilevel multiscale mimetic (M3) method for two-phase flows in porous media. J. Comput. Phys. 227, 6727–6753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Lipnikov, M. Shashkov, I. Yotov, Local flux mimetic finite difference methods. Numer. Math. 112 (1), 115–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. K. Lipnikov, G. Manzini, F. Brezzi, A. Buffa, The mimetic finite difference method for 3D magnetostatics fields problems. J. Comput. Phys. 230 (2), 305–328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Lipnikov, G. Manzini, M. Shashkov, Mimetic finite difference method. J. Comput. Phys. 257, Part B(0), 1163–1227 (2014)

    Google Scholar 

  45. K. Lipnikov, G. Manzini, D. Moulton, M. Shashkov, The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. J. Comput. Phys. 305, 111–126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. G. Manzini, A. Russo, N. Sukumar, New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24 (8), 1665–1699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. L. Margolin, M. Shashkov, P. Smolarkiewicz, A discrete operator calculus for finite difference approximations. Comput. Methods Appl. Mech. Eng. 187 (3–4), 365–383 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. V.I. Maslyankin, Convergence of the iterative process for the quasilinear heat transfer equation. USSR Comput. Math. Math. Phys. 17 (1), 201–210 (1977)

    Article  MATH  Google Scholar 

  49. A. Palha, P.P. Rebelo, R. Hiemstra, J. Kreeft, M. Gerritsma, Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. J. Comput. Phys. 257, Part B(0), 1394–1422 (2014)

    Google Scholar 

  50. P. Raviart, J. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Method, ed. by I. Galligani, E. Magenes. Lecture Notes in Mathematics, vol. 606 (Springer, New York, 1977)

    Google Scholar 

  51. L. Richards, Capillary conduction of liquids through porous mediums. Physics 1 5, 318–333 (1931)

    Article  MATH  Google Scholar 

  52. A. Samarskii, I. Sobol’, Examples of the numerical calculation of temperature waves. USSR Comput. Math. Math. Phys. 3 (4), 945–970 (1963)

    Google Scholar 

  53. N. Sukumar, A. Tabarraei, Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (12), 2045–2066 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. E. Wachspress, A Rational Finite Element Basis (Academic, New York, 1975)

    MATH  Google Scholar 

  55. J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The authors acknowledge the support of the US Department of Energy Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research.

The meshes for the Marshak problem were created and managed using the mesh generation toolset MSTK (software.lanl.gov/MeshTools/trac) developed by Dr. Rao Garimella at Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Lipnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lipnikov, K., Manzini, G. (2016). Discretization of Mixed Formulations of Elliptic Problems on Polyhedral Meshes. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_10

Download citation

Publish with us

Policies and ethics