Skip to main content

Hydrogen Production Processes

  • Chapter
  • First Online:
Sustainable Hydrogen Production Processes

Abstract

This chapter discusses the state-of-the-art in terms of hydrogen production processes. At first, the steam reforming reactions of ethanol, biogas, and natural gas are introduced. A study on the catalysts being used in the selected reforming processes is also presented with their respective operating temperatures, feed molar ratio, and conversion rates of reagents. Afterwards, the electrolysis process and types of electrolyzers are presented with the renewable energy sources required for such, as well as the settings adopted for this type of hydrogen production processes. This chapter is concluded with the presentation of the biological hydrogen production process from green algae, with the description of the alga strain and methodology for determining the amount of hydrogen produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cermet: A composite material composed of ceramic (CER) and metallic (MET) materials.

References

  • Ahmed A, Abdel M, Farag MAS (2011) Roles of microalgae and bacteria in hydrogen production as one of the renewable energy resources. Bull Environ Res 12(2):153–173

    Google Scholar 

  • Abreu AJ (2012) Desenvolvimento e caracterização de catalisadores de níquel suportados em matrizes CeO-ZrO2-Al2O3, 151 f. Teses (Doutorado)—Curso de Curso de Físico-química, Usp, São Carlos

    Google Scholar 

  • Aiche T (2005) Steam reforming of methane and bio-ethanol: post-graduate course bioenergy—theory and application. Department of Energy Technology, Fraunhofer Institute for Solar Energy Systems (ISE), Helsinki University of Technology—HUT, pp 18–19

    Google Scholar 

  • Aizquierdo U, Barrio VL, Lago N, Requies J, Cambra JF, Guemez MB, Arias PL (2012) Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. Int J Hydrogen Energy 37:13829–13842

    Article  Google Scholar 

  • Ali T-Raissi (2002) Technoeconomic analysis of area II hydrogen production—Part II. Hydrogen from ammonia and ammonia-borane complex for fuel cell applications. Proceedings of the 2002 U.S. DOE Hydrogen Program Review. NREL/CP-610-32405

    Google Scholar 

  • Alves SC (2005) Reforma a Vapor do Metano para a Produção de Hidrogênio: Estudo Termodinâmico e Protótipo de Modelo Matemático de Reator com Membrana. Dissertation, Uberlândia: Universidade Federal de Uberlândia

    Google Scholar 

  • Andrade RV (2007) Gaseificação de biomassa: Uma análise teórica e experimental, 205 f. Teses (Doutorado em Engenharia Mecânica)—Instituto de Engenharia Mecânica, Universidade Federal de Itajubá, Itajubá

    Google Scholar 

  • ANEEL (Brasil) (2008) Atlas de Energia Eletrica do Brasil: Agencia Nacional de Energia Eletrica, 3rd edn. ANEEL, Brasilia, 236 p

    Google Scholar 

  • ANEEL BRASIL (2014) http://www.aneel.gov.br/aplicacoes/capacidadebrasil/operacaocapacidadebrasil.asp. Accessed 17 May 2014

  • Araki S, Hino N, Mori T, Hikazudani S (2010) Autothermal reforming of biogas over a monolithic catalyst. J Nat Gas Chem 19(5):477–481

    Article  Google Scholar 

  • Arizona State University. http://www.asulightworks.com/blog?page=2. Accessed 17 July 2013

  • Avraam DG, Halkides TI, Liguras DK, Bereketidou OA, Goula MA (2010) An experimental and theoretical approach for the biogas steam reforming reaction. Int J Hydrogen Energy 35:9818–9827

    Article  Google Scholar 

  • Azenha MB (2013) A energia hidrelétrica não é limpa, nem barata. Interview, http://www.viomundo.com.br/entrevistas/bermann-a-energia-hidreletrica-nao-e-limpa-nem-barata.html. Accessed 10 Mar 2013

  • Basso G, Farret FA, Gonzatti F, Ferrigolo FZ, Franchi D, Miotto M (2013) Projeto e dimensionamento de uma lanta a células a combustível para redução do consumo de energia nos horários de pico de demanda. In: 2° Fórum Internacional Ecoinovar, Santa Maria, RS

    Google Scholar 

  • Basu P (2006) Combustion and gasification in fluidized beds. Taylor & Francis, Abingdon, pp 355–357

    Book  Google Scholar 

  • Bertuccioli L, Chan A, Hart D, Lehner F, Madden B, Standen E (2014) Study on development of water electrolysis in the EU. Final report. In: Fuel cells and hydrogen joint undertaking, 160p

    Google Scholar 

  • Beurden PV (2004) On the catalytic aspects of steam-methane reforming: a literature survey. ECN-I-04-003

    Google Scholar 

  • Bhandari R, Trudewind CA, Zapp P (2014) Life cycle assessment of hydrogen production via electrolysis—a review. J Cleaner Prod 85:151–163

    Article  Google Scholar 

  • Braga LB (2010) Análise econômica do uso de célula a combustível para acionamento de ônibus urbano, 99 f. Dissertation—Curso de Engenharia Mecânica, Departamento de Energía, UNESP, Guaratinguetá

    Google Scholar 

  • Brenna G (2010) New catalyst for the H2 production by water-gas shift reaction processes. Tese (Doutorado). Curso Química Industrial. Faculdade de Química Industrial. Universidade de Bologna

    Google Scholar 

  • Brisse A, Schefold J, Zahid M (2008) High temperature water electrolysis in solid oxide cells. Int J Hydrogen Energy 33:5375–5382

    Article  Google Scholar 

  • Burgess SJ, Tamburic B, Zemichael F, Hellgardt K, Nixon PJ (2011) Solar driven hydrogen production in green algae. Adv Appl Microbiol 75:71–110

    Article  Google Scholar 

  • Cai X, Dong X, Lin W (2006) AutotheRMAL REFORMING OF METHANE over Ni catalysts supported on CuO-ZrO2-CeO2-Al2O3. J Nat Gas Chem 15(2):122–126

    Article  Google Scholar 

  • Cairns EJ, Simons EL (1968) Ammonia-oxygen fuel cell. Nature 217(5130):780–781

    Article  Google Scholar 

  • Casanovas ARM, Leitenburg C, Trovarelli A, Lorca J (2010) Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. Int J Hydrogen Energy 35:7690–7698

    Article  Google Scholar 

  • Cheddie D (2012) Ammonia as a hydrogen source for fuel cells: a review. In: Minic D (ed), Hydrogen energy—challenges and perspectives. InTech. ISBN: 978-953-51-0812-2

    Google Scholar 

  • Chena Y, Wang Y, Xub H, Xiong G (2008) Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor. Appl Catal Environ 80:283–294

    Article  Google Scholar 

  • CIRCE (2005) Curso Técnico en Sistemas de Energías Renovables. Centro de Investigación de Recursos y Consumos Energéticos CIRCE, Centro Politécnico Superior, Universidad de Zaragoza, España

    Google Scholar 

  • Claassen PAM, de Vrije T (2006) Non-thermal production of pure hydrogen from biomass: HYVOLUTION. Int J Hydrogen Energy 3:1416–1423

    Article  Google Scholar 

  • Cortés OEJ (2009) Biocombustíveis a partir de microalgas: modelagem e análise de fotobiorreatores. Tese (Doutorado)—Curso Energia e Ambiente, Centro Interdisciplinar de Energia e Ambiente (CIEnAm), Universidade Federal da Bahia

    Google Scholar 

  • CRESESB (2012) http://www.cresesb.cepel.br/sundata/index.php. Accessed 15 August 2012

  • Dantas GA, Leite ALS (2013) Os custos da energia eólica brasileira. http://www.nuca.ie.ufrj.br/gesel/artigos/Os_custos_energia.pdf. Accessed 24 Feb 2013

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33:6046–6057

    Article  Google Scholar 

  • Duane MB, Ariff GD, James BD, Lettow JS, Thomas CE, Kuhn RC (2002) Cost and performance comparison of stationary hydrogen fueling appliances: Task 2 report. In: Directed Technologies, Inc. www.directedtechnologies.com

  • Dutra R (2008) CRESESB: Energia Eólica: Princípios e Tecnologia, 58 p

    Google Scholar 

  • Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84:869–874

    Article  Google Scholar 

  • Carnieletto R (2011) Aproveitamento de energia vertida turbinÃvel para produÓÐo de hidrogõnio e geraÓÐo distribuÚda. Universidade Federal de Santa Maria, Santa Maria, p 155

    Google Scholar 

  • Energy Options. http://energy-options.info/2011/03/25/lab-biofuel-now-to-go-into-the-marketplace/. Accessed 17 July 2013

  • FAPESP (2013) Revista Pesquisa (Org.). Reforma energética. http://revistapesquisa2.fapesp.br/?art=3029&bd=1&pg=5&lg. Accessed 10 Mar 2013

  • Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M (2011) Effects of feedstock on the process integration of biohydrogen production. Clean Technol Environ Policies J 13(4):547–558. doi:10.1007/s10098-011-0351-7

    Article  Google Scholar 

  • Furlan AL (2012) Análise técnica e econômica do uso do hidrogênio como meio armazenador de energia elétrica proveniente de fontes eólicas, 86 f. Tese (Doutorado)—Departamento de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Gibson TL, Kelly NA (2009) Predicting efficiency of solar powered hydrogen generation. Int J Hydrogen Energy 35:900–911

    Article  Google Scholar 

  • Gibson TL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940

    Article  Google Scholar 

  • Haag S, Burgard M, Ernst B (2007) Beneficial effects of the use of a nickel membrane reactor for the dry reforming of methane: comparison with thermodynamic predictions. J Catal 252:190–204

    Article  Google Scholar 

  • Hallenbeck PC, Benemann JR (2010) Biohidrogen: the microbiological production of hydrogen fuel. In: Doelle HW, Rokem S (eds) Biotechnologyin EOLSS encyclopedia: biotechnology, vol 7. ISBN: 978-1-84826-711-4

    Google Scholar 

  • Haryanto A, Fernando SD, Filip To SD, Steele PH, Pordesimo L, Adhikari S (2011) High temperature water gas shift reaction over nickel catalysts for hydrogen production: effect of supports, GHSV, metal loading, and dopant materials. J Thermodyn Catal 2:106. doi:10.4172/2153-0645.1000106

    Article  Google Scholar 

  • Hemschemeier AC (2005) The Anaerobic life of the photosynthetic alga Chlamydomonas Reinhardtii. Tese (Doutorado), University of Bochum, Germany

    Google Scholar 

  • HY Generation (2014) http://hy-generation.com/21prod_h2.html. Accessed 10 July 2014

  • Inoue T, Kumar SN, Kamachi T, Okura I (1999) Hydrogen evolution from glucose with the combination of Glucose dehydrogenase and Hydrogenase from A. eutrophus H16. Chem Lett 2:147–148

    Article  Google Scholar 

  • IRENA—International Renewable Energy Agency (2013) Summary for policy makers: renewable power generation costs: Abu Dhabi, United Arab Emirates, 12 p

    Google Scholar 

  • ITAIPU. https://www.itaipu.gov.br/energia/energia-disponivel-anual. Accessed 10 Apr 2014

  • Ivy J (2004) Summary of electrolytic hydrogen production, U.S. In: National Renewable Energy Laboratory, Golden, USA

    Google Scholar 

  • Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energy 29:1443–1450

    Article  Google Scholar 

  • Kothari R, Buddhi D, Sawhney RL (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sustain Energy Rev 12:553–563

    Article  Google Scholar 

  • Krona (2012) http://www.krona.srv.br/display05.htm. Accessed 10 Oct 2012

  • Kroposki B, Levene J, Harrison K, Sen PK, Novachek F (2006) Electrolysis: information and opportunities for electric power utilities. In: National Renewable Energy Laboratory, NREL/TP-581-40605

    Google Scholar 

  • Kuhn J, Kesler O (2015) Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization. J Power Sources 277:443–454

    Google Scholar 

  • Kwietniewska E, Tys J, Krzeminska I, Kozief W (2012) Microalgae-cultivation and application of biomass as a source of energy: a review. Instytut Agrofizyki im. Bohdana Dobrzańskiego, Lublin

    Google Scholar 

  • Larson ED, Williams RH, Regis M, Leal LV (2001) A review of biomass integrated gasifier/gas turbine combined cycle technology and its application in sugarcane industries with an analysis for Cuba. Energy Sustain Dev 5(1):54–76

    Article  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (2010) Princípios de bioquímica, 2nd edn. Editora Savier. ISBN 85-7378-026-6

    Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  Google Scholar 

  • Liguras DK, Kondarides DI, Verykios X (2003) Production of hydrogen for fuel cell by steam reforming of ethanol over supported noble metal catalyst. Appl Catal B Environ 43:345–354

    Article  Google Scholar 

  • Lipman T, Shah N (2007a). UC Berkeley Transportation Sustainability Research Center, UC Berkeley. http://www.escholarshiporg/uc/item/7z69v4wp

  • Lipman T, Shah N (2007b) Ammonia as an alternative energy storage medium for hydrogen fuel cells. Scientific and Technical Review for Near-Term Stationary Power Demonstration UCB-ITS-TSRC-RR-2007-5

    Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192. doi:10.1021/es0605016

    Article  Google Scholar 

  • Lopez RA (2004) Célula combustível a hidrogênio: fonte de energia da nova era. Artliber, São Paulo, 182 p

    Google Scholar 

  • Ma K, Schicho RN, Kelley RM, Adams MWW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90:5341–5344

    Article  Google Scholar 

  • Ma K, Zhou ZH, Adams MWW (1994) Hydrogen production from pyruvate by enzymes purified from the hyperthermophilic archaeon, Pyrococcus furiosus: a key role for NADPH. FEMS Microbiol Lett 122:245–250

    Article  Google Scholar 

  • Maggio G, Freni S, Cavallaro S (1998) Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. J Power Sources 74(1):17–23

    Article  Google Scholar 

  • Maia TA, Bellido JDA, Assaf EM, Assaf JM (2007) Produção de hidrogênio a partir da reforma a vapor de etanol utilizando catalisadores Cu/Ni/γ-Al2O3. Quim Nova 30:339–345

    Article  Google Scholar 

  • Ministry of Agriculture, Livestock and Food Supply—Secretariat for Production and Agroenergy (2006) Brazilian Agroenergy Plan, Embrapa Publishing House, 118p. http://www.agricultura.gov.br/pls/portal/docs/page/mapa/planos/pna_2006_2011/plano%20nacional%20de%20agroenergia%202006%20-%202011-%20ingles.pdf. Accessed 30 Jan 2011

  • Paisley MA, Litt RD, Creamer KS (1991) Gasification of refuse-derived fuel in a high throughput gasification system. Energy Biomass Waste 14:1991

    Google Scholar 

  • Pelczar JRMJ, Chan ECS, Krieg NR (2008) Microbiology, 5th edn. Tata Mc Graw Hill, New York

    Google Scholar 

  • Pérez NP, Machin EB, Pedroso DT, Antunes JS, Silveira JL (2014) Fluid-dynamic assessment of sugarcane bagasse to use as feedstock in bubbling fluidized bed gasifiers. Appl Therm Eng 73(1):238–244

    Article  Google Scholar 

  • Pimentel TTBC (2012) O Enfrentamento político dos conflitos socioambientais decorrentes da implantação de usinas hidrelétricas. Dissertation, Curso Planejamento de Gestão Ambiental, Universidade Catolica de Brasilia

    Google Scholar 

  • Piroonlerkgul P et al (2008) Selection of appropriate fuel processor for biogas-fuelled SOFC system. Chem Eng J 140:341–351

    Google Scholar 

  • Raj NT, Goic SR (2011) A review of renewable energy based cogeneration technologies. Renew Sustain Energy Rev 15(8):3640–3648

    Article  Google Scholar 

  • Reed TB, Das A (1998) Handbook of biomass downdraft gasifier engine systems. The Biomass Energy Foundation Press, Golden

    Google Scholar 

  • Roberts JJ (2012) Análise de Desempenho de um sistema Hibrido de Geração de energia solar-eólico-diesel considerando variações probabilisticas da carga e dos recursos renováveis, 151f. Dissertation. Curso Engenharia Mecânica. Faculdade de Engenharia de Guaratinguetá

    Google Scholar 

  • Rozendal RA (2007) Hydrogen production through biocatalyzed electrolysis. PhD thesis Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Saebea D, Arpornwichanop A, Patcharavorachot Y, Assabumrungrat S (2011) Adsorption-membrane hybrid system for ethanol steam reforming: thermodynamic analysis. Int J Hydrogen Energy 36:12234–14428

    Article  Google Scholar 

  • Sahara Forest Project (2013) http://www.flickr.com/photos/bellona-foundation/sets/72157626842235875/. Accessed 18 July 2013

  • Sánchez CG, Silva E, Gomes EO (2008) Gaseificação. In: Biomassa para Energia, vol 1, 1 edn. Editora da UNICAMP, Campinas, pp 284–368

    Google Scholar 

  • Santos JHT (2004) Avaliação de um sistema de aquecimento do substrato na digestão anaeróbia de dejetos suínos. Dissertation, Universidade Federal de Viçosa

    Google Scholar 

  • Scholz M, Melin T, Wessling M (2013) Transforming biogas into biomethane using membrane technology. Renew Sustain Energy Rev 17:199–212

    Article  Google Scholar 

  • Silva EP (1991) Introdução à tecnologia e economia do hidrogênio. Unicamp, Campinas, p 204. ISBN: 85-268-0174-0

    Google Scholar 

  • Silva ME (2005) Análise Termoquímica de Reformador de Etanol: Produção de Hidrogênio para Acionamento de uma Célula a Combustível do Tipo PEM de 1 kW. Guaratinguetá, 108p. Dissertation. Curso em Engenharia Mecânica Departamento de Energia, Faculdade de Engenharia, Campus de Guaratinguetá, Universidade Estadual Paulista

    Google Scholar 

  • Silva ME (2010) Análise experimental da reforma a vapor de etanol: aspectos técnicos, econômicos e ecológicos. Tese (Doutorado)—Curso em Engenharia Mecânica. Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista, Guaratinguetá

    Google Scholar 

  • Silveira JL (2012) Energia: crise e planejamento. http://www.comciencia.br/reportagens/energiaeletrica/energia13.htm. Accessed 2 Mar 2012

  • Silveira JL, Braga LB, Souza ACC, Antunes JS, Zanzi R (2009) The benefits of ethanol use for hydrogen production in urban transportation. Renew Sustain Energy Rev 13(9):2525–2534

    Article  Google Scholar 

  • Silversand F (2002) Catalytic heat exchangers for small-scale production of hydrogen—feasibility study. Svenskt Gastekniskt Center

    Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sustain Energy Rev 16:2347–2353

    Article  Google Scholar 

  • Smolinka T, Günther M, Garche J (2011) Status and development potential of water electrolysis for producing hydrogen from renewable sources. National Organisation Hydrogen and Fuel Cell Technology, Berlin

    Google Scholar 

  • Sorensen B (2005) Hydrogen and fuel cell: emerging technologies and applications. Elsevier Academic Press, Amsterdam, 450 p

    Google Scholar 

  • Souza MMVM (2005) Supported nickel catalysts for steam reforming of methane. In: 2nd Mercosur Congress on Chemical Engineering, 4th Mercosur Congress on Process Systems Engineering, Rio de Janeiro

    Google Scholar 

  • Spath PL, Mann (2000) Life cycle assessment of a natural gas combined-cycle power generation system. NREL/TP-570-27715 Colorado: U.S. Department of Energy

    Google Scholar 

  • Stein W, Edwards J, Hinkley J, Sattler C (2009) Natural gas: solar-thermal steam reforming. In: Encyclopedia of electrochemical power sources, pp 300–312

    Google Scholar 

  • Sugai MH (2012) Modelagem matemática de coluna de gaseificação de fotobiorreatores tubulares para cultivo de microalgas. Dissertação em Engenharia Química, Setor de Tecnologia, Universidade Federal do Paraná, Curitiba

    Google Scholar 

  • Tamburic B, Zemichael FW, Maitland GC, Hellgardt K (2011) Parameters affecting the growth and hydrogen production of the green algae Chlamydomonas reinhardtii. Int J Hydrogen Energy 36:7872–7876

    Article  Google Scholar 

  • Takeguchi T et al (2002) Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J Power Sources 112:588–595

    Google Scholar 

  • Tao X, Qi F, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of thermal plasma and catalyst. Int J Hydrogen Energy 33:1262–1265

    Article  Google Scholar 

  • Thomas G, Parks G (2006) Potential roles of ammonia in a hydrogen economy: a study of issues related to the use ammonia for on-board vehicular hydrogen storage. U.S. Department of Energy, February. http://hydrogen.energy.gov/pdfs/nh3_paper.pdf

  • T-Raissi A, Block DL (2004) Hydrogen: automotive fuel of the future. IEEE Power Energy Mag 2(6):40–45

    Article  Google Scholar 

  • Trane R, Dahl S, Skjøth-rasmussen MS, Jensen AD (2012) Catalytic steam reforming of bio-oil. Int J Hydrogen Energy 37:6447–6472

    Article  Google Scholar 

  • University of Nevada (2013) http://hrc.unlv.edu/renewable/biofuels/rd_Photobioreactor.html. Accessed 17 July 2013

  • Ursúa A, Gandía LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. In: Proceedings of The IEEE 100, New York, pp 410–426

    Google Scholar 

  • Usui N, Ikenouchi M (1997) Biological CO2 fixation and utilization project by RITE. 1. Highly-effective photobioreactor system. Energy Convers Manag 38:487–492

    Article  Google Scholar 

  • Van de Beld L (2001) Cleaning of hot producer gas in a catalytic, reverse flow reactor, Final report for: Novem (EWAB Programme, Report No. 9605) and European Commission (AIR Programme, AIR-CT93-1436)

    Google Scholar 

  • Van der Meijden CM (2010) Development of the MILENA gasification technology for the production of Bio-SNG. PhD Thesis, ECN-B-10-016

    Google Scholar 

  • Vasconcelos N (2006) Reforma a Vapor do Metano em Catalisadores à Base de Níquel Promovidos com Nióbia. Dissertation, Universidade Federal Fluminense, Niteroi

    Google Scholar 

  • Vreugdenhil BJ, Van der Drift A, Van der Meijden CM (2009) Co-gasification of biomass and lignite in the indirect gasifier Milena. In: Proceeding of Pittsburgh coal conference, Pittsburgh, USA, 20–23 September

    Google Scholar 

  • Wang M, Wang Z, Gong X, Guo Z (2014) The intensification technologies to water electrolysis for hydrogen production—a review. Renew Sustain Energy Rev 29:573–588

    Article  Google Scholar 

  • Wang SJ, Yin SF, Li L, Xu BQ (2004a) Ng CF, Au CT. Appl Catal B Environ 52:287

    Article  Google Scholar 

  • Wang Y, Chin YH, Rozmiarek RT, Johnson BR, Gao Y, Watson J, Tonkovich AYL, Vander DP (2004b) Highly active and stable Rh/MgO–Al2O3 catalysts for methane steam reforming. Catal Today 98:575–581

    Article  Google Scholar 

  • Williams RH (1996) Biomass gasifier gas turbine power generating technology. Biomass Bioenergy 10(1996):149–166

    Article  Google Scholar 

  • Wongchanapai S, Iwai H, Saito M, Yoshida H (2013) Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system. J Power Sources 223:9–17

    Article  Google Scholar 

  • Woodward J, Cordray KA, Edmonston RJ, Blanco-Rivera M, Mattingly SM, Evans BR (2000a) Enzymatic hydrogen production: conversion of renewable resources for energy production. Energy Fuels 14:197–201

    Article  Google Scholar 

  • Woodward J, Mattingly SM, Danson M, Hough D, Ward N, Adams M (1996) In vitro hydrogen production by glucose dehydrogenase and hydrogenase. Nat Biotechnol 14:872–874

    Article  Google Scholar 

  • Woodward J, Orr M (1998) Enzymatic conversion of sucrose to hydrogen. Biotechnol Prog 14:897–902

    Article  Google Scholar 

  • Woodward J, Orr M, Cordray K, Greenbaum E (2000b) Enzymatic production of biohydrogen. Nature 405:1014–1015

    Article  Google Scholar 

  • Worley M, Yale J (2012) Biomass gasification technology assessment, consolidated report 2012. National Renewable Energy Laboratory (NREL)-SR-5100-57085

    Google Scholar 

  • Xu G, Chen X, Honda K, Zhang ZG (2004) Producing H2-rich gas from simulated biogas and applying the gas to a 50W PEFC stack. National Institute of Advanced Industrial Science and Technology (AIST). http://www.interscience.wiley.com

  • Yin SF, Xu BQ, Wang SJ, Ng CF, Au CT (2004a) Catal Lett 96:113

    Article  Google Scholar 

  • Yin SF, Zhang QH, Xu BQ, Zhu WX, Ng CF, Au CT (2004b) J Catal 224:384

    Article  Google Scholar 

  • Zainal A (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development. Renew Sustain Energy Rev 114:2852–2862

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luz Silveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braga, L.B. et al. (2017). Hydrogen Production Processes. In: Silveira, J. (eds) Sustainable Hydrogen Production Processes. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41616-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41616-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41614-4

  • Online ISBN: 978-3-319-41616-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics