Skip to main content

Random Projections for Large-Scale Regression

  • Chapter
  • First Online:
Big and Complex Data Analysis

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Fitting linear regression models can be computationally very expensive in large-scale data analysis tasks if the sample size and the number of variables are very large. Random projections are extensively used as a dimension reduction tool in machine learning and statistics. We discuss the applications of random projections in linear regression problems, developed to decrease computational costs, and give an overview of the theoretical guarantees of the generalization error. It can be shown that the combination of random projections with least squares regression leads to similar recovery as ridge regression and principal component regression. We also discuss possible improvements when averaging over multiple random projections, an approach that lends itself easily to parallel implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66 (4), 671–687 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (2006)

    Google Scholar 

  3. Blocki, J., Blum, A., Datta, A., and Sheffet, O.: The Johnson-Lindenstrauss transform itself preserves differential privacy. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 410–419. IEEE, Washington, DC (2012)

    Google Scholar 

  4. Cook, R.D.: Detection of influential observation in linear regression. Technometrics 19, 15–18 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algoritm. 22, 60–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dhillon, P.S., Foster, D.P., Kakade, S.: A risk comparison of ordinary least squares vs ridge regression. J. Mach. Learn. Res. 14, 1505–1511 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Dhillon, P., Lu, Y., Foster, D.P., Ungar, L.: New subsampling algorithms for fast least squares regression. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 360–368. Curran Associates, Inc. (2013). http://papers.nips.cc/paper/5105-new-subsampling-algorithms-for-fast-least-squares-regression.pdf

    Google Scholar 

  8. Indyk, P. and Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998)

    Google Scholar 

  9. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Contemporary Mathematics: Conference on Modern Analysis and Probability (1984)

    Google Scholar 

  10. Kabán, A.: A new look at compressed ordinary least squares. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 482–488 (2013). doi:10.1109/ICDMW.2013.152, ISSN:2375-9232

    Google Scholar 

  11. Lu, Y., Dhillon, P.S., Foster, D., Ungar, L.: Faster ridge regression via the subsampled randomized hadamard transform. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 369-377. Curran Associates Inc., Lake Tahoe (2013). http://dl.acm.org/citation.cfm?id=2999611.2999653

  12. Mahoney, M.W., Drineas, P.: CUR matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. 106 (3), 697–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maillard, O.-A., Munos, R.: Compressed least-squares regression. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1213–1221. Curran Associates, Inc. (2009). http://papers.nips.cc/paper/3698-compressed-least-squares-regression.pdf

    Google Scholar 

  14. Marzetta, T., Tucci, G., Simon, S.: A random matrix-theoretic approach to handling singular covariance estimates. IEEE Trans. Inf. Theory 57 (9), 6256–6271 (2011)

    Article  MathSciNet  Google Scholar 

  15. McWilliams, B., Krummenacher, G., Lučić, M., and Buhmann, J.M.: Fast and robust least squares estimation in corrupted linear models. In: NIPS (2014)

    Google Scholar 

  16. McWilliams, B., Heinze, C., Meinshausen, N., Krummenacher, G., Vanchinathan, H.P.: Loco: distributing ridge regression with random projections. arXiv preprint arXiv:1406.3469 (2014)

    Google Scholar 

  17. Tropp, J.A.: Improved analysis of the subsampled randomized Hadamard transform. arXiv:1011.1595v4 [math.NA] (2010)

    Google Scholar 

  18. Zhang, L., Mahdavi, M., Jin, R., Yang, T., Zhu, S.: Recovering optimal solution by dual random projection. arXiv preprint arXiv:1211.3046 (2012)

    Google Scholar 

  19. Zhou, S., Lafferty, J., Wasserman, L.: Compressed and privacy-sensitive sparse regression. IEEE Trans. Inf. Theory. 55 (2), 846-866 (2009). doi:10.1109/TIT.2008.2009605. ISSN:0018-9448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Meinshausen .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section we give proofs of the statements from the section theoretical results. Theorem  1 ([10]) Assume fixed design and Rank(X) ≥ d, then the AMSE  4 can be bounded above by

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\|\mathbf{X}\beta -\mathbf{X}\hat{\beta }_{d}^{\boldsymbol{\phi }}\|_{ 2}^{2}]] \leq \sigma ^{2}d + \frac{\|\mathbf{X}\beta \|_{2}^{2}} {d} +\mathop{ \mathrm{trace}}\nolimits (\mathbf{X}^{{\prime}}\mathbf{X})\frac{\|\beta \|_{2}^{2}} {d}. }$$
(21)

Proof

(Sketch)

$$\displaystyle\begin{array}{rcl} \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\|\mathbf{X}\beta -\mathbf{X}\hat{\beta }_{d}^{\boldsymbol{\phi }}\|_{ 2}^{2}]]& =& \mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }(\boldsymbol{\phi }^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\boldsymbol{\phi })^{-1}\boldsymbol{\phi }^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\beta \|_{ 2}^{2}] +\sigma ^{2}d {}\\ & \leq & \mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }(\boldsymbol{\phi }^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\boldsymbol{\phi })^{-1}\boldsymbol{\phi }^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}\beta \|_{ 2}^{2}] +\sigma ^{2}d {}\\ & =& \mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}\beta \|_{ 2}^{2}] +\sigma ^{2}d. {}\\ \end{array}$$

Finally a rather lengthy but straightforward calculation leads to

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}\beta \|_{ 2}^{2}] = \frac{\|\mathbf{X}\beta \|_{2}^{2}} {d} +\mathop{ \mathrm{trace}}\nolimits (\mathbf{X}^{{\prime}}\mathbf{X})\frac{\|\beta \|_{2}^{2}} {d} }$$
(22)

and thus proving the statement above. □ 

Theorem  2 Assume Rank(X) ≥ d, then the AMSE (4) can be bounded above by

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\|\mathbf{X}\beta -\mathbf{X}\hat{\beta }_{d}^{\boldsymbol{\phi }}\|_{ 2}^{2}]] \leq \sigma ^{2}d +\sum _{ i=1}^{p}\beta _{ i}^{2}\lambda _{ i}w_{i} }$$
(23)

where

$$\displaystyle{ w_{i} = \frac{(1 + 1/d)\lambda _{i}^{2} + (1 + 2/d)\lambda _{i}\mathop{ \mathrm{trace}}\nolimits (\varSigma ) +\mathop{ \mathrm{trace}}\nolimits (\varSigma )^{2}/d} {(d + 2 + 1/d)\lambda _{i}^{2} + 2(1 + 1/d)\lambda _{i}\mathop{ \mathrm{trace}}\nolimits (\varSigma ) +\mathop{ \mathrm{trace}}\nolimits (\varSigma )^{2}/d}. }$$
(24)

Proof

We have for all \(v \in \mathbb{R}^{p}\)

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathop{\min }\limits_{\hat{\gamma }\in \mathbb{R}^{d}}\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\hat{\gamma }\|_{ 2}^{2}] \leq \mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}v\|_{ 2}^{2}]. }$$

Which we can minimize over the whole set \(\mathbb{R}^{p}\):

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathop{\min }\limits_{\hat{\gamma }\in \mathbb{R}^{d}}\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\hat{\gamma }\|_{ 2}^{2}] \leq \mathop{\min }\limits_{ v \in \mathbb{R}^{p}}\mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}v\|_{ 2}^{2}]. }$$

This last expression we can calculate following the same path as in Theorem 1:

$$\displaystyle\begin{array}{rcl} \mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}v\|_{ 2}^{2}]& =& \beta ^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\beta - 2\beta ^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\mathbb{E}_{\boldsymbol{\phi }}[\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}]v {}\\ & & +v^{{\prime}}\mathbb{E}_{\boldsymbol{\phi }}[\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}]v {}\\ & =& \beta ^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}\beta - 2\beta ^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}v {}\\ & & +(1 + 1/d)v^{{\prime}}\mathbf{X}^{{\prime}}\mathbf{X}v + \frac{\mathop{\mathrm{trace}}\nolimits (\varSigma )} {d} \|v\|_{2}^{2}, {}\\ \end{array}$$

where Σ = X X. Next we minimize the above expression w.r.t v. For this we take the derivative w.r.t. v and then we zero the whole expression. This yields

$$\displaystyle{ 2\Big(1 + \frac{1} {d}\Big)\varSigma v + 2\frac{\mathop{\mathrm{trace}}\nolimits (\varSigma )} {d} I_{p\times p}v - 2\varSigma \beta = 0. }$$

Hence we have

$$\displaystyle{ v =\Big (\Big(1 + \frac{1} {d}\Big)\varSigma + \frac{\mathop{\mathrm{trace}}\nolimits (\varSigma )} {d} I_{p\times p}\Big)^{-1}\varSigma \beta, }$$

which is element wise equal to

$$\displaystyle{ v_{i} = \frac{\beta _{i}\lambda _{i}} {(1 + 1/d)\lambda _{i} +\mathop{ \mathrm{trace}}\nolimits (\varSigma )/d}. }$$

Define the notation \(s =\mathop{ \mathrm{trace}}\nolimits (\varSigma )\). We now plug this back into the original expression and get

$$\displaystyle\begin{array}{rcl} \mathop{\min }\limits_{v \in \mathbb{R}^{p}}\mathbb{E}_{\boldsymbol{\phi }}[\|\mathbf{X}\beta -\mathbf{X}\boldsymbol{\phi }\boldsymbol{\phi }^{{\prime}}v\|_{ 2}^{2}]& =& \beta ^{{\prime}}\varSigma \beta - 2\beta ^{{\prime}}\varSigma v {}\\ & & +(1 + 1/d)v^{{\prime}}\varSigma v + \frac{s} {d}\|v\|_{2}^{2} {}\\ & =& \sum _{i=1}^{p}\beta _{ i}^{2}\lambda _{ i} - 2\beta _{i}v_{i}\lambda _{i} + (1 + 1/d)v_{i}^{2}\lambda _{ i} + s/dv_{i}^{2} {}\\ & =& \sum _{i=1}^{p}\Big(\beta _{ i}^{2}\lambda _{ i} - 2\beta _{i}^{2}\lambda _{ i} \frac{\lambda _{i}} {(1 + 1/d)\lambda _{i} + s/d} {}\\ & & +\beta _{i}^{2}\lambda _{ i}(1 + 1/d) \frac{\lambda _{i}^{2}} {((1 + 1/d)\lambda _{i} + s/d)^{2}} {}\\ & & +\beta _{i}^{2}\lambda _{ i}\frac{s} {d} \frac{\lambda _{i}} {((1 + 1/d)\lambda _{i} + s/d)^{2}}\Big) {}\\ & =& \sum _{i=1}^{p}\beta _{ i}^{2}\lambda _{ i}w_{i}, {}\\ \end{array}$$

by combining the summands we get for w i the expression mentioned in the theorem. □ 

Theorem  3 Assume Rank(X) ≥ d, then the MSE (4) equals

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\|\mathbf{X}\beta -\mathbf{X}\hat{\beta }_{d}^{\boldsymbol{\phi }}\|_{ 2}^{2}]] =\sigma ^{2}d +\sum _{ i=1}^{p}\beta _{ i}^{2}\lambda _{ i}\Big(1 -\frac{\lambda _{i}} {\eta _{i}}\Big). }$$
(25)

Furthermore we have

$$\displaystyle{ \sum _{i=1}^{p}\frac{\lambda _{i}} {\eta _{i}} = d. }$$
(26)

Proof

Calculating the expectation yields

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\|\mathbf{X}\beta -\mathbf{X}\hat{\beta }_{d}\|_{2}^{2}]] =\beta ^{{\prime}}\varSigma \beta - 2\beta ^{{\prime}}\varSigma T_{ d}^{\phi }\varSigma \beta + \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[Y ^{{\prime}}\mathbf{X}\phi _{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}}Y ]]. }$$

Going through these terms we get:

$$\displaystyle\begin{array}{rcl} \beta ^{{\prime}}\varSigma \beta & =& \sum _{ i=1}^{p}\beta _{ i}^{2}\lambda _{ i} {}\\ \beta ^{{\prime}}\varSigma T_{ d}^{\phi }\varSigma \beta & =& \sum _{ i=1}^{p}\beta _{ i}^{2}\frac{\lambda _{i}^{2}} {\eta _{i}} {}\\ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[Y ^{{\prime}}\mathbf{X}\phi _{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}}Y ]]& =& \beta ^{{\prime}}\varSigma \mathbb{E}_{\boldsymbol{\phi }}[\phi _{ d}^{\mathbf{X}}]\varSigma \beta + \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\varepsilon ^{{\prime}}\mathbf{X}\phi _{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}}\varepsilon ]]. {}\\ \end{array}$$

The first term in the last line equals i = 1 p β i 2 λ i 2η i . The second can be calculated in two ways, both relying on the shuffling property of the trace operator:

$$\displaystyle\begin{array}{rcl} \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\varepsilon ^{{\prime}}\mathbf{X}\phi _{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}}\varepsilon ]]& =& \mathbb{E}_{\varepsilon }[\varepsilon ^{{\prime}}\mathbf{X}T_{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}}\varepsilon ]] =\sigma ^{2}\mathop{ \mathrm{trace}}\nolimits (\mathbf{X}T_{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}}) {}\\ & =& \sigma ^{2}\mathop{ \mathrm{trace}}\nolimits (\varSigma T_{ d}^{\mathbf{X}}) =\sum _{ i=1}^{p}\frac{\lambda _{i}} {\eta _{i}}. {}\\ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\varepsilon ^{{\prime}}\mathbf{X}\phi _{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}}\varepsilon ]]& =& \sigma ^{2}\mathbb{E}_{\boldsymbol{\phi }}[\mathop{\mathrm{trace}}\nolimits (\mathbf{X}\phi _{ d}^{\mathbf{X}}\mathbf{X}^{{\prime}})] =\sigma ^{2}\mathbb{E}_{\boldsymbol{\phi }}[\mathop{\mathrm{trace}}\nolimits (\varSigma \phi _{ d}^{\mathbf{X}})] {}\\ & =& \sigma ^{2}\mathbb{E}_{\boldsymbol{\phi }}[\mathop{\mathrm{trace}}\nolimits (I_{ d\times d})] =\sigma ^{2}d. {}\\ \end{array}$$

Adding the first version to the expectation from above we get the exact expected mean-squared error. Setting both versions equal we get the equation

$$\displaystyle{ d =\sum _{ i=1}^{p}\frac{\lambda _{i}} {\eta _{i}}\,\,\,\,. }$$

 □ 

Theorem  4 Assume Rank(X) ≥ d, then there exists a real number τ ∈ [d 2 ∕p,d] such that the AMSE of \(\hat{\beta }_{d}\) can be bounded from above by

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\|\mathbf{X}\beta -\mathbf{X}\hat{\beta }_{d}\|_{2}^{2}]] \leq \sigma ^{2}\tau +\sum _{ i=1}^{p}\beta _{ i}^{2}\lambda _{ i}w_{i}^{2}, }$$

where the w i ’s are given as

$$\displaystyle{ w_{i} = \frac{(1 + 1/d)\lambda _{i}^{2} + (1 + 2/d)\lambda _{i}\mathop{ \mathrm{trace}}\nolimits (\varSigma ) +\mathop{ \mathrm{trace}}\nolimits (\varSigma )^{2}/d} {(d + 2 + 1/d)\lambda _{i}^{2} + 2(1 + 1/d)\lambda _{i}\mathop{ \mathrm{trace}}\nolimits (\varSigma ) +\mathop{ \mathrm{trace}}\nolimits (\varSigma )^{2}/d} }$$

and

$$\displaystyle{ \tau \in [d^{2}/p,d]. }$$

Proof

First a simple calculation [10] using the closed form solution gives the following equation:

$$\displaystyle{ \mathbb{E}_{\boldsymbol{\phi }}[\mathbb{E}_{\varepsilon }[\|\mathbf{X}\beta -\mathbf{X}\hat{\beta }_{d}\|_{2}^{2}]] =\sigma ^{2}\sum _{ i=1}^{p}\Big(\frac{\lambda _{i}} {\eta _{i}}\Big)^{2} +\sum _{ i=1}^{p}\beta _{ i}^{2}\lambda _{ i}\Big(1 -\frac{\lambda _{i}} {\eta _{i}}\Big)^{2}. }$$
(27)

Now using the corollary from the last section we can bound the second term by the following way:

$$\displaystyle{ \Big(1 -\frac{\lambda _{i}} {\eta _{i}}\Big)^{2} \leq w_{ i}^{2}. }$$
(28)

For the first term we write

$$\displaystyle{ \tau =\sum _{ i=1}^{p}\Big(\frac{\lambda _{i}} {\eta _{i}}\Big)^{2}. }$$
(29)

Now note that since λ i η i  ≤ 1 we have

$$\displaystyle{ \Big(\frac{\lambda _{i}} {\eta _{i}}\Big)^{2} \leq \frac{\lambda _{i}} {\eta _{i}} }$$
(30)

and thus we get the upper bound by

$$\displaystyle{ \sum _{i=1}^{p}\Big(\frac{\lambda _{i}} {\eta _{i}}\Big)^{2} \leq \sum _{ i=1}^{p}\frac{\lambda _{i}} {\eta _{i}} = d. }$$
(31)

For the lower bound of τ we consider an optimization problem. Denote \(t_{i} = \frac{\lambda _{i}} {\eta _{i}}\), then we want to find \(t \in \mathbb{R}^{p}\) such that

$$\displaystyle{ \sum _{i=1}^{p}t_{ i}^{2}\text{ is minimal } }$$

under the restrictions that

$$\displaystyle{\sum _{i=1}^{p}t_{ i} = d\text{ and }0 \leq t_{i} \leq 1.}$$

The problem is symmetric in each coordinate and thus t i  = c. Plugging this into the linear sum gives c = dp and we calculate the quadratic term to give the result claimed in the theorem. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thanei, GA., Heinze, C., Meinshausen, N. (2017). Random Projections for Large-Scale Regression. In: Ahmed, S. (eds) Big and Complex Data Analysis. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-41573-4_3

Download citation

Publish with us

Policies and ethics