Skip to main content

Tests of Concentration for Low-Dimensional and High-Dimensional Directional Data

  • Chapter
  • First Online:
Big and Complex Data Analysis

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

We consider asymptotic inference for the concentration of directional data. More precisely, we propose tests for concentration (1) in the low-dimensional case where the sample size n goes to infinity and the dimension p remains fixed, and (2) in the high-dimensional case where both n and p become arbitrarily large. To the best of our knowledge, the tests we provide are the first procedures for concentration that are valid in the (n, p)-asymptotic framework. Throughout, we consider parametric FvML tests, that are guaranteed to meet asymptotically the nominal level constraint under FvML distributions only, as well as “pseudo-FvML” versions of such tests, that meet asymptotically the nominal level constraint within the whole class of rotationally symmetric distributions. We conduct a Monte-Carlo study to check our asymptotic results and to investigate the finite-sample behavior of the proposed tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amos, D.E.: Computation of modified Bessel functions and their ratios. Math. Comput. 28 (125), 239–251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banerjee, A., Ghosh, J.: Frequency sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres. IEEE Trans. Neural Netw. 15, 702–719 (2004)

    Article  Google Scholar 

  3. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Briggs, M.S.: Dipole and quadrupole tests of the isotropy of gamma-ray burst locations. Astrophys. J. 407, 126–134 (1993)

    Article  Google Scholar 

  5. Cai, T., Jiang, T.: Phase transition in limiting distributions of coherence of high-dimensional random matrices. J. Multivar. Anal. 107, 24–39 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, T., Fan, J., Jiang, T.: Distributions of angles in random packing on spheres. J. Mach. Learn. Res. 14, 1837–1864 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Cutting, C., Paindaveine, D., Verdebout, T.: testing uniformity on high-dimensional spheres against monotone rotationally symmetric alternatives. Ann. Stat. (to appear)

    Google Scholar 

  8. Dryden, I.L.: Statistical analysis on high-dimensional spheres and shape spaces. Ann. Statist. 33, 1643–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fisher, R.A.: Dispersion on a sphere. Proc. R. Soc. Lond. Ser. A 217, 295–305 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fisher, N.: Problems with the current definitions of the standard deviation of wind direction. J. Clim. Appl. Meteorol. 26 (11), 1522–1529 (1987)

    Article  Google Scholar 

  11. Ko, D.: Robust estimation of the concentration parameter of the von Mises-Fisher distribution. Ann. Statist. 20 (2), 917–928 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ko, D., Guttorp, P.: Robustness of estimators for directional data. Ann. Statist. 16 (2), 609–618 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Larsen, P., Blæsild, P., Sørensen, M.: Improved likelihood ratio tests on the von Mises–Fisher distribution. Biometrika 89 (4), 947–951 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ley, C., Verdebout, T.: Local powers of optimal one-and multi-sample tests for the concentration of Fisher-von Mises-Langevin distributions. Int. Stat. Rev. 82, 440–456 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ley, C., Paindaveine, D., Verdebout, T.: High-dimensional tests for spherical location and spiked covariance. J. Multivar. Anal. 139, 79–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mardia, K.V., Jupp, P.E.: Directional Statistics, vol. 494. Wiley, New York (2009)

    MATH  Google Scholar 

  17. Paindaveine, D., Verdebout, T.: On high-dimensional sign tests. Bernoulli 22, 1745–1769 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Paindaveine, D., Verdebout, T.: Optimal rank-based tests for the location parameter of a rotationally symmetric distribution on the hypersphere. In: Hallin, M., Mason, D., Pfeifer, D., Steinebach, J. (eds.) Mathematical Statistics and Limit Theorems: Festschrift in Honor of Paul Deheuvels, pp. 249-270. Springer (2015)

    Google Scholar 

  19. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press, London (1986)

    Book  MATH  Google Scholar 

  20. Stephens, M.: Multi-sample tests for the fisher distribution for directions. Biometrika 56 (1), 169–181 (1969)

    Article  MATH  Google Scholar 

  21. Verdebout, T.: On some validity-robust tests for the homogeneity of concentrations on spheres. J. Nonparametr. Stat. 27, 372–383 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Watamori, Y., Jupp, P.E.: Improved likelihood ratio and score tests on concentration parameters of von Mises–Fisher distributions. Stat. Probabil. Lett. 72 (2), 93–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Watson, G.S.: Statistics on Spheres. Wiley, New York (1983)

    MATH  Google Scholar 

Download references

Acknowledgements

D. Paindaveine’s research supported by an A.R.C. contract from the Communauté Française de Belgique and by the IAP research network grant P7/06 of the Belgian government (Belgian Science Policy).

T. Verdebout’s research is supported by a grant from the “Banque Nationale de Belgique”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davy Paindaveine .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1

 (i) All expectations and variances when proving Part (i) of the theorem are taken under \(\mathcal{R}_{p}^{(n)}(\boldsymbol{\theta },F)\) and all stochastic convergences are taken as n →  under \(\mathcal{R}_{p}^{(n)}(\boldsymbol{\theta },F)\). Since

$$\displaystyle{ n^{1/2}(\bar{\mathbf{X}}_{ n} - e_{10}\boldsymbol{\theta }) = O_{\mathrm{P}}(1), }$$
(5)

the delta method (applied to the mapping xx∕ ∥ x ∥ ) yields

$$\displaystyle{ n^{1/2}(\mathbf{Y}_{ n}-\boldsymbol{\theta }) = e_{10}^{-1}[\mathbf{I}_{ p} -\boldsymbol{\theta }\boldsymbol{\theta }^{{\prime}}]n^{1/2}(\bar{\mathbf{X}}_{ n} - e_{10}\boldsymbol{\theta }) + o_{\mathrm{P}}(1), }$$
(6)

where we wrote \(\mathbf{Y}_{n}:=\bar{ \mathbf{X}}_{n}/\|\bar{\mathbf{X}}_{n}\|\). This, and the fact that

$$\displaystyle{\mathbf{S}_{n}\stackrel{\mathrm{P}}{\rightarrow }\mathrm{E}[\mathbf{X}_{1}\mathbf{X}_{1}^{{\prime}}] = \mathrm{E}[(\mathbf{X}_{ 1}^{{\prime}}\boldsymbol{\theta })^{2}]\boldsymbol{\theta }\boldsymbol{\theta }' + \frac{1 -\mathrm{E}[(\mathbf{X}_{1}^{{\prime}}\boldsymbol{\theta })^{2}]} {p - 1} \,(\mathbf{I}_{p} -\boldsymbol{\theta }\boldsymbol{\theta }^{{\prime}}),}$$

where I p denotes the p-dimensional identity matrix, readily implies that

$$\displaystyle{ \hat{\sigma }_{n}^{2}:= \frac{\bar{\mathbf{X}}_{n}^{{\prime}}\mathbf{S}_{ n}\bar{\mathbf{X}}_{n}} {\|\bar{\mathbf{X}}_{n}\|^{2}} - e_{10}^{2} = \mathbf{Y}_{ n}^{{\prime}}\mathbf{S}_{ n}\mathbf{Y}_{n} - e_{10}^{2}\stackrel{\mathrm{P}}{\rightarrow }\mathrm{E}[(\mathbf{X}_{ 1}^{{\prime}}\boldsymbol{\theta })^{2}] - e_{ 10}^{2} = \mathrm{Var}[\mathbf{X}_{ 1}^{{\prime}}\boldsymbol{\theta }]. }$$
(7)

Now, write

$$\displaystyle{ \frac{n^{1/2}(\|\bar{\mathbf{X}}_{n}\| - e_{10})} {\hat{\sigma }_{n}} = \frac{n^{1/2}\bar{\mathbf{X}}_{n}^{{\prime}}(\mathbf{Y}_{n}-\boldsymbol{\theta })} {\hat{\sigma }_{n}} + \frac{n^{1/2}(\bar{\mathbf{X}}_{n}^{{\prime}}\boldsymbol{\theta }- e_{10})} {\hat{\sigma }_{n}} =: S_{1n} + S_{2n}, }$$
(8)

say. It directly follows from (5) to (7) that S 1n  = o P(1) as n → . As for S 2n , the central limit theorem and Slutsky’s lemma yield that S 2n is asymptotically standard normal. This readily implies that

$$\displaystyle{T_{\mathrm{WJm}}^{(n)} =\bigg (\frac{n^{1/2}(\|\bar{\mathbf{X}}_{ n}\| - e_{10})} {\hat{\sigma }_{n}} \bigg)^{2}\stackrel{\mathcal{L}}{\rightarrow }\chi _{ 1}^{2}.}$$

(ii) In view of the derivations above, the continuous mapping theorem implies that, for any \(\boldsymbol{\theta }\in \mathcal{S}^{p-1}\) and \(F \in \mathcal{F}_{0}\),

$$\displaystyle{T_{\mathrm{WJm}}^{(n)} = \frac{n(\|\bar{\mathbf{X}}_{n}\| - e_{10})^{2}} {\mathrm{Var}[\mathbf{X}_{1}^{{\prime}}\boldsymbol{\theta }]} + o_{\mathrm{P}}(1)}$$

as n →  under \(\mathcal{R}_{p}^{(n)}(\boldsymbol{\theta },F)\). The result then follows from the fact that, under \(\mathcal{R}_{p}^{(n)}(\boldsymbol{\theta },F_{p,\kappa _{0}})\), with κ 0 = h p −1(e 10), \(\mathrm{Var}[\mathbf{X}_{1}^{{\prime}}\boldsymbol{\theta }] = 1 -\frac{p-1} {\kappa _{0}} e_{10} - e_{10}^{2};\) see, e.g., Lemma S.2.1 from [7]. □ 

Proof of Proposition 1

From Lemma S.2.1 in [7], we have that, under \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{p_{n},\kappa _{n}})\),

$$\displaystyle{e_{n1} = \frac{I_{p_{n}/2}(\kappa _{n})} {I_{p_{n}/2-1}(\kappa _{n})}\ \text{ and }\ \tilde{e}_{n2} = 1 -\frac{p_{n} - 1} {\kappa _{n}} \,e_{n1} - e_{n1}^{2}.}$$

The result then readily follows from

$$\displaystyle{ \frac{z} {\nu +1 + \sqrt{z^{2 } + (\nu +1)^{2}}} \leq \frac{I_{\nu +1}(z)} {I_{\nu }(z)} \leq \frac{z} {\nu +\sqrt{z^{2 } +\nu ^{2}}} }$$
(9)

for any ν, z > 0; see (9) in [1]. □ 

Proof of Theorem 2

Writing \(e_{n2}:= \mathrm{E}[(\mathbf{X}_{n1}^{{\prime}}\boldsymbol{\theta }_{n})^{2}]\), Theorem 5.1 in [7] entails that, under \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{p_{n},\kappa _{n}})\), where (κ n ) is an arbitrary sequence in (0, ),

$$\displaystyle{ \frac{\sqrt{p_{n}}\big(n\|\bar{\mathbf{X}}_{n}\|^{2} - 1 - (n - 1)e_{n1}^{2}\big)} {\sqrt{2}\left (\,p_{n}\tilde{e}_{n2}^{2} + 2np_{n}e_{n1}^{2}\tilde{e}_{n2} + (1 - e_{n2})^{2}\right )^{1/2}}}$$

converges weakly to the standard normal distribution as n → . The result then follows from the fact that, under \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{p_{n},\kappa _{n}})\), where the sequence (κ n ) is such that, for any n, e n1 = e 10 under \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{p_{n},\kappa _{n}})\), one has

$$\displaystyle{e_{n2} = 1 -\frac{p_{n} - 1} {\kappa _{n}} \,e_{10},\quad \tilde{e}_{n2} = 1 -\frac{p_{n} - 1} {\kappa _{n}} \,e_{10} - e_{10}^{2},\quad \text{and}\quad \kappa _{ n}/p_{n} \rightarrow c_{0}\ \text{ as }n \rightarrow \infty;}$$

see Proposition 1(ii). □ 

The proof of Theorem 3 requires the three following preliminary results:

Lemma 1

Let Z be a random variable such that P [|Z|≤ 1] = 1. Then Var [Z 2 ] ≤ 4 Var [Z].

Lemma 2

Let the assumptions of Theorem  3 hold. Write \(\hat{e}_{n1} =\|\bar{ \mathbf{X}}_{n}\|\) and \(\hat{e}_{n2}:=\bar{ \mathbf{X}}_{n}^{{\prime}}\mathbf{S}_{n}\bar{\mathbf{X}}_{n}/\|\bar{\mathbf{X}}_{n}\|^{2}\) . Then, as n →∞ under  \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{p_{n},\kappa _{n}})\) , (i) \((\hat{e}_{n1}^{2} - e_{10}^{2})/(e_{n2} - e_{10}^{2}) = o_{\mathrm{P}}(1)\) and (ii) \((\hat{e}_{2n} - e_{n2})/(e_{n2} - e_{10}^{2}) = o_{\mathrm{P}}(1)\).

Lemma 3

Let the assumptions of Theorem  3 hold. Write σ n 2 := p n (e n2 − e 10 2 ) 2 + 2np n e 10 2 (e n2 − e 10 2 ) + (1 − e n2 ) 2 and \(\hat{\sigma }_{n}^{2}:= p_{n}(\hat{e}_{n2} -\hat{ e}_{n1}^{2})^{2} + 2np_{n}e_{10}^{2}(\hat{e}_{n2} -\hat{ e}_{n1}^{2}) + (1 -\hat{ e}_{n2})^{2}\) . Then \((\hat{\sigma }_{n}^{2} -\sigma _{n}^{2})/\sigma _{n}^{2} = o_{\mathrm{P}}(1)\) as n →∞ under  \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{p_{n},\kappa _{n}})\).

Proof of Lemma 1

Let Z a and Z b be mutually independent and identically distributed with the same distribution as Z. Since | x 2y 2 | ≤ 2 | xy | for any x, y ∈ [−1, 1], we have that

$$\displaystyle{\mathrm{Var}[Z^{2}] = \frac{1} {2}\,\mathrm{E}[(Z_{a}^{2} - Z_{ b}^{2})^{2}] \leq 2\,\mathrm{E}[(Z_{ a} - Z_{b})^{2}] = 4\,\mathrm{Var}[Z],}$$

which proves the result. □ 

Proof of Lemma 2

All expectations and variances in this proof are taken under the sequence of hypotheses \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{n})\) considered in the statement of Theorem 3, and all stochastic convergences are taken as n →  under the same sequence of hypotheses. (i) Proposition 5.1 from [7] then yields

$$\displaystyle{ \mathrm{E}[\hat{e}_{n1}^{2}] = \mathrm{E}[\|\bar{\mathbf{X}}_{ n}\|^{2}] = \frac{n - 1} {n} \,e_{10}^{2} + \frac{1} {n} }$$
(10)

and

$$\displaystyle\begin{array}{rcl} \mathrm{Var}[\hat{e}_{n1}^{2}]& =& \mathrm{Var}[\|\bar{\mathbf{X}}_{ n}\|^{2}] = \frac{2(n - 1)} {n^{3}} \,\tilde{e}_{2n}^{2} + \frac{4(n - 1)^{2}} {n^{3}} \,e_{10}^{2}\tilde{e}_{ n2} + \frac{2(n - 1)} {n^{3}(\,p_{n} - 1)}(1 - e_{n2}^{2})^{2} \\ & =& \frac{4} {n}\,e_{10}^{2}\tilde{e}_{ n2} + O(n^{-2}) {}\end{array}$$
(11)

as n → . In view of Condition (i) in Theorem 3, this readily implies

$$\displaystyle\begin{array}{rcl} \mathrm{E}\Big[\Big(\frac{\hat{e}_{n1}^{2} - e_{10}^{2}} {\tilde{e}_{n2}} \Big)^{2}\Big]& =& \mathrm{Var}\Big[\frac{\hat{e}_{n1}^{2} - e_{ 10}^{2}} {\tilde{e}_{n2}} \Big] +\Big (\mathrm{E}\Big[\frac{\hat{e}_{n1}^{2} - e_{10}^{2}} {\tilde{e}_{n2}} \Big]\Big)^{2} {}\\ & =& \frac{4e_{10}^{2}} {n\tilde{e}_{n2}} + O\Big( \frac{1} {n^{2}\tilde{e}_{n2}^{2}}\Big) +\Big (\frac{1 - e_{10}^{2}} {n\tilde{e}_{n2}} \Big)^{2} = o(1) {}\\ \end{array}$$

as n → , which establishes Part (i) of the result.

(ii) Write

$$\displaystyle{\frac{\hat{e}_{n2} - e_{n2}} {\tilde{e}_{n2}} = \frac{1} {\tilde{e}_{n2}}\bigg(\Big( \frac{1} {\hat{e}_{n1}^{2}} - \frac{1} {e_{10}^{2}}\Big)\bar{\mathbf{X}}_{n}^{{\prime}}\mathbf{S}_{ n}\bar{\mathbf{X}}_{n} + \frac{1} {e_{10}^{2}}\,\bar{\mathbf{X}}_{n}^{{\prime}}\mathbf{S}_{ n}\bar{\mathbf{X}}_{n} - e_{n2}\bigg).}$$

Part (i) of the result shows that \((\hat{e}_{n1}^{2} - e_{10}^{2})/\tilde{e}_{n2}\) is o P(1) as n → . Since (10) and (11) yield that \(\hat{e}_{n1}\) converges in probability to e 10( ≠ 0), this implies that \((\hat{e}_{n1}^{-2} - e_{10}^{-2})/\tilde{e}_{n2}\) is o P(1) as n → . This, and the fact that \(\bar{\mathbf{X}}_{n}^{{\prime}}\mathbf{S}_{n}\bar{\mathbf{X}}_{n} = O_{\mathrm{P}}(1)\) as n → , readily yields

$$\displaystyle{ \frac{\hat{e}_{n2} - e_{n2}} {\tilde{e}_{n2}} = \frac{1} {\tilde{e}_{n2}}\bigg( \frac{1} {e_{10}^{2}}\,\bar{\mathbf{X}}_{n}^{{\prime}}\mathbf{S}_{ n}\bar{\mathbf{X}}_{n} - e_{n2}\bigg) + o_{\mathrm{P}}(1) }$$
(12)

as n → . Since

$$\displaystyle{ \frac{1} {e_{10}^{2}}\,\bar{\mathbf{X}}_{n}^{{\prime}}\mathbf{S}_{ n}\bar{\mathbf{X}}_{n} = \frac{1} {e_{10}^{2}}\,(\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta })^{{\prime}}\mathbf{S}_{ n}(\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta }) + \frac{2} {e_{10}}\,(\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta })^{{\prime}}\mathbf{S}_{ n}\boldsymbol{\theta } +\boldsymbol{\theta } ^{{\prime}}\mathbf{S}_{ n}\boldsymbol{\theta },}$$

the result follows if we can prove that

$$\displaystyle\begin{array}{rcl} & & A_{n}:= \frac{1} {\tilde{e}_{n2}}(\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta })^{{\prime}}\mathbf{S}_{ n}(\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta }),\ \ B_{n}:= \frac{1} {\tilde{e}_{n2}}(\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta })^{{\prime}}\mathbf{S}_{ n}\boldsymbol{\theta }, {}\\ & & \quad \text{ and }\ \ C_{n}:= \frac{1} {\tilde{e}_{n2}}(\boldsymbol{\theta }^{{\prime}}\mathbf{S}_{ n}\boldsymbol{\theta } - e_{n2}) {}\\ \end{array}$$

all are o P(1) as n → .

Starting with A n , (10) yields

$$\displaystyle{ \mathrm{E}[\vert A_{n}\vert ] \leq \frac{1} {\tilde{e}_{n2}}\,\mathrm{E}[\|\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta }\|^{2}] = \frac{1} {\tilde{e}_{n2}}\,\Big(\frac{n - 1} {n} \,e_{10}^{2} + \frac{1} {n} - e_{10}^{2}\Big) = \frac{1 - e_{10}^{2}} {n\tilde{e}_{n2}} = o(1) }$$
(13)

as n → . Since convergence in L 1 is stronger than convergence in probability, this implies that A n  = o P(1) as n → . Turning to B n , the Cauchy–Schwarz inequality and (13) provide

$$\displaystyle{\mathrm{E}[\vert B_{n}\vert ] \leq \frac{1} {\tilde{e}_{n2}}\,\mathrm{E}[\|\bar{\mathbf{X}}_{n} - e_{10}\boldsymbol{\theta }\|^{2}] = o(1),}$$

as n → , so that B n is indeed o P(1) as n → . Finally, it follows from Lemma 1 that

$$\displaystyle\begin{array}{rcl} \mathrm{E}[C_{n}^{2}] = \frac{1} {\tilde{e}_{n2}^{2}}\mathrm{E}[(\boldsymbol{\theta }^{{\prime}}\mathbf{S}_{ n}\boldsymbol{\theta } - e_{n2})^{2}]& =& \frac{1} {n\tilde{e}_{n2}^{2}}\mathrm{Var}[(\mathbf{X}_{n1}^{{\prime}}\boldsymbol{\theta })^{2}] \leq \frac{4} {n\tilde{e}_{n2}} = o(1) {}\\ \end{array}$$

as n → , so that C n is also o P(1) as n → . This establishes the result. □ 

Proof of Lemma 3

As in the proof of Lemma 2, all expectations and variances in this proof are taken under the sequence of hypotheses \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{n})\) considered in the statement of Theorem 3, and all stochastic convergences are taken as n →  under the same sequence of hypotheses.

Let then \(\tilde{\sigma }_{n}^{2}:= 2np_{n}e_{10}^{2}(e_{n2} - e_{10}^{2})\). Since Condition (i) in Theorem 3 directly entails that \(\sigma _{n}^{2}/\tilde{\sigma }_{n}^{2} \rightarrow 1\) as n → , it is sufficient to show that \((\hat{\sigma }_{n}^{2} -\sigma _{n}^{2})/\tilde{\sigma }_{n}^{2}\) is o P(1) as n → . To do so, write

$$\displaystyle{ \hat{\sigma }_{n}^{2} -\sigma _{ n}^{2} = A_{ n} + B_{n} + C_{n}, }$$
(14)

where

$$\displaystyle{A_{n}:= p_{n}\left ((\hat{e}_{n2} -\hat{ e}_{n1}^{2})^{2} - (e_{ n2} - e_{10}^{2})^{2}\right ),\quad B_{ n}:= 2np_{n}e_{10}^{2}\left (\hat{e}_{ n2} -\hat{ e}_{n1}^{2} - e_{ n2} + e_{10}^{2}\right ),}$$

and

$$\displaystyle{C_{n}:= (1 -\hat{ e}_{n2})^{2} - (1 - e_{ n2})^{2}.}$$

Since

$$\displaystyle{\frac{\vert A_{n}\vert } {\tilde{\sigma }_{n}^{2}} \leq \frac{p_{n}} {\tilde{\sigma }_{n}^{2}} = \frac{1} {2ne_{10}^{2}(e_{n2} - e_{10}^{2})}\quad \text{ and }\quad \frac{\vert C_{n}\vert } {\tilde{\sigma }_{n}^{2}} \leq \frac{1} {\tilde{\sigma }_{n}^{2}} = \frac{1} {2np_{n}e_{10}^{2}(e_{n2} - e_{10}^{2})},}$$

almost surely, Condition (i) in Theorem 3 implies that \(A_{n}/\tilde{\sigma }_{n}^{2}\) and \(C_{n}/\tilde{\sigma }_{n}^{2}\) are o P(1) as n → . The result then follows from the fact that, in view of Lemma 2,

$$\displaystyle{\frac{B_{n}} {\tilde{\sigma }_{n}^{2}} = \frac{(\hat{e}_{n2} - e_{n2}) - (\hat{e}_{n1}^{2} - e_{10}^{2})} {e_{n2} - e_{10}^{2}} }$$

is also o P(1) as n → . □ 

Proof of Theorem 3

Decompose Q CPVm (n) into

$$\displaystyle{ Q_{\mathrm{CPVm}}^{(n)} = \frac{\sigma _{n}} {\hat{\sigma }_{n}} \times \frac{\sqrt{p_{n}}\left (n\|\bar{\mathbf{X}}_{n}\|^{2} - 1 - (n - 1)e_{10}^{2}\right )} {\sqrt{2}\,\sigma _{n}} =: \frac{\sigma _{n}} {\hat{\sigma }_{n}} \times V _{n}, }$$
(15)

say. Theorem 5.1 in [7] entails that, under the sequence of hypotheses \(\mathcal{R}_{p_{n}}^{(n)}(\boldsymbol{\theta }_{n},F_{n})\) considered in the statement of the theorem, V n is asymptotically standard normal as n → . The result therefore follows from Lemma 3 and the Slutsky’s lemma. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cutting, C., Paindaveine, D., Verdebout, T. (2017). Tests of Concentration for Low-Dimensional and High-Dimensional Directional Data. In: Ahmed, S. (eds) Big and Complex Data Analysis. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-41573-4_11

Download citation

Publish with us

Policies and ethics