Skip to main content

Direct Adaptive Feedback Attenuation of Narrow-Band Disturbances

  • Chapter
  • First Online:
Adaptive and Robust Active Vibration Control

Abstract

This chapter presents the basic algorithm for direct adaptive feedback attenuation of unknown and time-varying narrow-band disturbances. This algorithm implements the Internal Model Principle for disturbance attenuation using a Youla–Kučera parametrization for the controller. The use of a FIR Youla–Kučera filter allows to develop a direct adaptive scheme where the poles of the closed-loop defined by the central controller remain unchanged. Specific robustness issues for the design of the central controller are discussed. Experimental results obtained on the bench tests presented in Chap. 2 will illustrate the performance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Called tonal disturbances.

  2. 2.

    Throughout the chapter, it is assumed that the number of narrow-band disturbances is known (it can be estimated from data if necessary) but not their frequency characteristics.

  3. 3.

    The Youla–Kučera parametrization has been presented in Chap. 7.

  4. 4.

    The disturbance passes through a so called primary path which is not represented in this figure, and p(t) is its output.

  5. 5.

    The argument \((z^{-1})\) will be omitted in some of the following equations to make them more compact.

  6. 6.

    It is assumed that a reliable model identification is achieved and therefore the estimated model is assumed to be equal to the true model.

  7. 7.

    Throughout the book, \(n_X\) denotes the degree of the polynomial X.

  8. 8.

    Of course, it is assumed that \(D_{p}\) and B do not have common factors.

  9. 9.

    In adaptive control and estimation the predicted output at \(t+1\) can be computed either on the basis of the previous parameter estimates (a priori, time t) or on the basis of the current parameter estimates (a posteriori, time \(t+1\)).

  10. 10.

    Of course the value of 2 s can be changed, but the principle of measurement remains the same.

  11. 11.

    Any design method allowing to satisfy these constraints can be used.

  12. 12.

    For results obtained with an indirect adaptive control scheme see [7].

  13. 13.

    The case of multiple unknown narrow-band disturbances will be discussed in Chap. 13.

References

  1. Widrow B, Stearns S (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Beranek L, Ver I (1992) Noise and vibration control engineering: principles and applications. Wiley, New York

    Google Scholar 

  3. Fuller C, Elliott S, Nelson P (1997) Active control of vibration. Academic Press, New York

    Book  Google Scholar 

  4. Elliott S (2001) Signal processing for active control. Academic Press, San Diego

    Google Scholar 

  5. Landau I, Alma M, Airimitoaie T (2011) Adaptive feedforward compensation algorithms for active vibration control with mechanical coupling. Automatica 47(10):2185–2196. doi:10.1016/j.automatica.2011.08.015

    Article  MathSciNet  MATH  Google Scholar 

  6. Francis B, Wonham W (1976) The internal model principle of control theory. Automatica 12(5):457–465. doi:10.1016/0005-1098(76)90006-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Landau I, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied to an active suspension - an internal model principle approach. Automatica 41(4):563–574

    Article  MathSciNet  MATH  Google Scholar 

  8. Bengtsson G (1977) Output regulation and internal models - a frequency domain approach. Automatica 13(4):333–345. doi:10.1016/0005-1098(77)90016-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Landau I, Alma M, Martinez J, Buche G (2011) Adaptive suppression of multiple time-varying unknown vibrations using an inertial actuator. IEEE Trans Control Syst Technol 19(6):1327–1338. doi:10.1109/TCST.2010.2091641

    Article  Google Scholar 

  10. Castellanos Silva A, Landau ID, Ioannou P (2014) Direct adaptive regulation in the vicinity of low damped complex zeros - application to active vibration control. In: 22nd Mediterranean conference on control and automation (MED), pp 255–260 (2014)

    Google Scholar 

  11. Li S, Qiu J, Ji H, Zhu K, Li J (2011) Piezoelectric vibration control for all-clamped panel using dob-based optimal control. Mechatronics 21(7):1213–1221. doi:10.1016/j.mechatronics.2011.07.005

    Article  Google Scholar 

  12. Chen X, Tomizuka M (2015) Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing. Int J Adapt Control Signal Process 29(11):1459–1474. http://dx.doi.org/10.1002/acs.2546

  13. Landau ID, Alma M, Constantinescu A, Martinez JJ, Noë M (2011) Adaptive regulation - rejection of unknown multiple narrow band disturbances (a review on algorithms and applications). Control Eng Pract 19(10):1168–1181. doi:10.1016/j.conengprac.2011.06.005

    Article  Google Scholar 

  14. Landau I, Zito G (2005) Digital control systems - design, identification and implementation. Springer, London

    Google Scholar 

  15. Anderson B (1998) From Youla-Kučera to identification, adaptive and nonlinear control. Automatica 34(12):1485–1506. http://www.sciencedirect.com/science/article/pii/S0005109898800022

  16. Tsypkin Y (1997) Stochastic discrete systems with internal models. J Autom Inf Sci 29(4&5):156–161

    Article  Google Scholar 

  17. Landau ID, Silva AC, Airimitoaie TB, Buche G, Noé M (2013) Benchmark on adaptive regulation - rejection of unknown/time-varying multiple narrow band disturbances. Eur J Control 19(4):237–252. doi:10.1016/j.ejcon.2013.05.007

    Article  MathSciNet  MATH  Google Scholar 

  18. Landau ID, Lozano R, M’Saad M, Karimi A (2011) Adaptive control, 2nd edn. Springer, London

    Book  MATH  Google Scholar 

  19. Landau ID, Airimitoaie TB, Castellanos Silva A (2015) Adaptive attenuation of unknown and time-varying narrow band and broadband disturbances. Int J Adapt Control Signal Process 29(11):1367–1390

    Article  MathSciNet  MATH  Google Scholar 

  20. Alma M, Martinez J, Landau I, Buche G (2012) Design and tuning of reduced order H\(_\infty \) feedforward compensators for active vibration control. IEEE Trans Control Syst Technol 20(2):554–561. doi:10.1109/TCST.2011.2119485

    Article  Google Scholar 

  21. Valentinotti S (2001) Adaptive rejection of unstable disturbances: application to a fed-batch fermentation. Thèse de doctorat, École Polytechnique Fédérale de Lausanne

    Google Scholar 

  22. Valentinotti S, Srinivasan B, Holmberg U, Bonvin D, Cannizzaro C, Rhiel M, von Stockar U (2003) Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite. Control Eng Pract 11(6):665–674. doi:10.1016/S0967-0661(02)00172-7

    Article  Google Scholar 

  23. Ben Amara F, Kabamba P, Ulsoy A (1999) Adaptive sinusoidal disturbance rejection in linear discrete-time systems - Part I: theory. J Dyn Syst Meas Control 121:648–654

    Article  Google Scholar 

  24. F Ben Amara, Kabamba P, Ulsoy A (1999) Adaptive sinusoidal disturbance rejection in linear discrete-time systems - Part II: experiments. J Dyn Syst Meas Control 121:655–659

    Article  Google Scholar 

  25. Bodson M, Douglas S (1997) Adaptive algorithms for the rejection of sinusosidal disturbances with unknown frequency. Automatica 33:2213–2221

    Article  MathSciNet  MATH  Google Scholar 

  26. Marino R, Santosuosso G, Tomei P (2003) Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica 39:1755–1761

    Article  MathSciNet  MATH  Google Scholar 

  27. Ding Z (2003) Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica 39(3):471–479. doi:10.1016/S0005-1098(02)00251-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Gouraud T, Gugliemi M, Auger F (1997) Design of robust and frequency adaptive controllers for harmonic disturbance rejection in a single-phase power network. In: Proceedings of the European control conference, Bruxelles

    Google Scholar 

  29. Hillerstrom G, Sternby J (1994) Rejection of periodic disturbances with unknown period - a frequency domain approach. In: Proceedings of American control conference, Baltimore, pp 1626–1631

    Google Scholar 

  30. Johnson C (1976) Theory of disturbance-accomodating controllers. In: Leondes CT (ed) Control and dynamical systems, vol 12, pp 387–489

    Google Scholar 

  31. Serrani A (2006) Rejection of harmonic disturbances at the controller input via hybrid adaptive external models. Automatica 42(11):1977–1985. doi:10.1016/j.automatica.2006.06.014

    Article  MathSciNet  MATH  Google Scholar 

  32. Jia QW (2009) Disturbance rejection through disturbance observer with adaptive frequency estimation. IEEE Trans Magn 45(6):2675–2678. doi:10.1109/TMAG.2009.2018605

    Article  Google Scholar 

  33. Bodson M (2005) Rejection of periodic distrubances of unknown and time-varying frequency. Int J Adapt Control Signal Process 19:67–88

    Google Scholar 

  34. Tsypkin Y (1991) Adaptive-invariant discrete control systems. In: Thoma M, Wyner A (eds) Foundations of adaptive control. Lecture notes in control and information science, vol 160. Springer, Heidelberg, pp 239–268

    Google Scholar 

  35. Mullhaupt Ph, Valentinotti S, Srinivasan B, Bonvin D (2012) Asymptotic rejection of nonvanishing disturbances despite plant-model mismatch. Int J Adapt Control Signal Process 26(12):1090–1110

    Google Scholar 

  36. Jafari S, Ioannou P, Fitzpatrick B, Wang Y (2013) Robust stability and performance of adaptive jitter supression in laser beam pointing. In: 52nd IEEE conference on decision and control. Florence, Italy

    Google Scholar 

  37. Jafari S, Ioannou P, Fitzpatrick B, Wang Y (2013) Robustness and performance of adaptive suppresion of unknown periodic disturbances. IEEE Trans Autom Control (Under review)

    Google Scholar 

  38. Castellanos-Silva A, Landau ID, Ioannou P (2015) Robust direct adaptive regulation of unknown disturbances in the vicinity of low-damped complex zeros-application to AVC. IEEE Trans Control Syst Technol 24(2):733–740. doi:10.1109/TCST.2015.2445859

    Google Scholar 

  39. Chen X, Tomizuka M (2012) A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives. IEEE Trans Control Syst Technol 20(2):408–415. doi:10.1109/TCST.2011.2178025

    Article  Google Scholar 

  40. Martinez JJ, Alma M (2012) Improving playability of blu-ray disc drives by using adaptive suppression of repetitive disturbances. Automatica 48(4):638–644

    Article  MathSciNet  MATH  Google Scholar 

  41. Semba T, White M, Huang FY (2011) Adaptive cancellation of self-induced vibration. IEEE Trans Magn 47(7):1958–1963. doi:10.1109/TMAG.2011.2138685

    Article  Google Scholar 

  42. Bohn C, Cortabarria A, Hrtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039. http://dx.doi.org/10.1016/j.conengprac.2003.09.008. http://www.sciencedirect.com/science/article/pii/S0967066103002144. Special Section on Emerging Technologies for Active Noise and Vibration Control Systems

  43. Hara S, Yoshida K (1996) Simultaneous optimization of positioning and vibration control using a time-varying frequency-shaped criterion function. Control Eng Pract 4(4):553–561. doi:10.1016/0967-0661(96)00039-1. http://www.sciencedirect.com/science/article/pii/0967066196000391

  44. Beltrán-Carbajal F, Silva-Navarro G (2014) Active vibration control in duffing mechanical systems using dynamic vibration absorbers. J Sound Vib 333(14):3019–3030. doi:10.1016/j.jsv.2014.03.002. http://www.sciencedirect.com/science/article/pii/S0022460X14001825

  45. Ficocelli M, Ben Amara F (2009) Adaptive regulation of MIMO linear systems against unknown sinusoidal exogenous inputs. Int J Adapt Control Signal Process 23(6):581–603. http://dx.doi.org/10.1002/acs.1072

  46. Jafari S, Ioannou PA (2016) Rejection of unknown periodic disturbances for continuous-time MIMO systems with dynamic uncertainties. Int J Adapt Control Signal Process. http://dx.doi.org/10.1002/acs.2683

  47. Menini L, Possieri C, Tornambè A (2015) Sinusoidal disturbance rejection in chaotic planar oscillators. Int J Adapt Control Signal Process 29(12):1578–1590. http://dx.doi.org/10.1002/acs.2564

  48. Sun Z, Tsao T (2000) Adaptive control with asymptotic tracking performance and its application to an electro-hydraulic servo system. J Dyn Syst Meas Control 122:188–195

    Article  Google Scholar 

  49. Zhang Y, Mehta P, Bitmead R, Johnson C (1998) Direct adaptive control for tonal disturbance rejection. In: Proceedings of the American control conference, Philadelphia, pp 1480–1482

    Google Scholar 

  50. Feng G, Palaniswami M (1992) A stable adaptive implementation of the internal model principle. IEEE Trans Autom Control 37:1220–1225

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Doré Landau .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Landau, I.D., Airimitoaie, TB., Castellanos-Silva, A., Constantinescu, A. (2017). Direct Adaptive Feedback Attenuation of Narrow-Band Disturbances. In: Adaptive and Robust Active Vibration Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-41450-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41450-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41449-2

  • Online ISBN: 978-3-319-41450-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics