Skip to main content

Probing Selenoprotein Translation by Ribosome Profiling

  • Chapter
  • First Online:
Selenium

Abstract

Selenoproteins with known functions are oxidoreductase enzymes that serve roles in maintaining cellular redox balance, reproductive health, thyroid hormone metabolism, development, and immune functions. Unique to selenoprotein biosynthesis is the requirement during translation to redefine an in-frame UGA codon to encode for selenocysteine rather than terminate translation. This non-canonical translation event is a bottleneck in selenoprotein synthesis and subject to gene-specific regulation. Here, the application of ribosome profiling, which involves deep sequencing of ribosome protected mRNA fragments, to examine mechanisms of selenoprotein biosynthesis will be discussed. The ability of this technique to quantify ribosome abundance and position, at codon resolution, on selenoprotein mRNAs has provided important insight into long-standing questions regarding the efficiency and regulation of selenocysteine incorporation as well as provoking new questions for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. VM Labunskyy et al 2014 Physiol Rev 94:739

    Google Scholar 

  2. GV Kryukov et al 2003 Science 300:1439

    Google Scholar 

  3. MJ Berry et al 1993 EMBO J 12:3315

    Google Scholar 

  4. KE Hill et al 1993 Proc Natl Acad Sci U S A 90:537

    Google Scholar 

  5. Q Shen et al 1993 J Biol Chem 268:11463

    CAS  PubMed  Google Scholar 

  6. MT Howard et al 2005 EMBO J 24:1596

    Google Scholar 

  7. MT Howard et al 2007 RNA 13:912

    Google Scholar 

  8. JL Bubenik et al 2013 PLoS One 8:e62102

    Google Scholar 

  9. D Fagegaltier et al 2000 EMBO J 19:4796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. RM Tujebajeva et al 2000 EMBO Rep 1:158

    Google Scholar 

  11. AM Zavacki et al 2003 Mol Cell 11:773

    Article  CAS  PubMed  Google Scholar 

  12. PR Copeland et al 2000 EMBO J 19:306

    Google Scholar 

  13. PR Copeland et al 2001 Mol Cell Biol 21:1491

    Google Scholar 

  14. S Seeher et al 2014 Antioxid Redox Signal 21:835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ME Budiman et al 2009 Mol Cell 35:479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. AC Miniard et al 2010 Nucleic Acids Res 38:4807

    Google Scholar 

  17. NT Ingolia et al 2009 Science 324:218

    Google Scholar 

  18. GA Brar, JS Weissman 2015 Nat Rev Mol Cell Biol 16:651

    Article  CAS  PubMed  Google Scholar 

  19. MT Howard et al 2013 J Biol Chem 288:19401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. N Sonenberg, AG Hinnebusch 2009 Cell 136:731

    Google Scholar 

  21. Atkins, JF et al 2010 Recoding, Expansion of Decoding Rules Enriches Gene Expression Springer Science + Business Media LLC, New York

    Book  Google Scholar 

  22. PV Baranov et al 2002 Gene 286:187

    Google Scholar 

  23. JA Steitz 1969 Nature 224:957

    Google Scholar 

  24. SL Wolin, P Walter 1988 EMBO J 7:3559

    Google Scholar 

  25. NT Ingolia et al 2014 Cell Rep 8:1365

    Google Scholar 

  26. NT Ingolia et al 2011 Cell 147:789

    Google Scholar 

  27. R Shalgi et al 2013 Mol Cell 49:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D Behne et al 1988 Biochim Biophys Acta 966:12

    Article  CAS  PubMed  Google Scholar 

  29. KE Hill et al 1996 Biochim Biophys Acta 1313:29

    Google Scholar 

  30. XG Lei et al 1995 J Nutr 125:1438

    Google Scholar 

  31. AM Raines, RA Sunde 2011 BMC Genomics 12:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. SP Shetty et al 2014 J Biol Chem 289:25317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D Hatfield et al 1991 Nucleic Acids Res 19:939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. HS Chittum et al 1997 Biochim Biophys Acta 1359:25

    Google Scholar 

  35. ME Moustafa et al 2001 Mol Cell Biol 21:3840

    Google Scholar 

  36. BA Carlson et al 2005 J Biol Chem 280:5542

    Article  CAS  PubMed  Google Scholar 

  37. BA Carlson et al 2007 J Biol Chem 282:32591

    Article  CAS  PubMed  Google Scholar 

  38. JE Squires et al 2007 Mol Cell Biol 27:7848

    Google Scholar 

  39. JL Bubenik et al 2014 RNA Biol 11:1402

    Google Scholar 

  40. L Chavatte et al 2005 Nat Struct Mol Biol 12:408

    Article  CAS  PubMed  Google Scholar 

  41. L Wurth et al 2014 Nucleic Acids Res 42:8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. GV Kryukov, VN Gladyshev 2000 Genes Cells 5:1049

    Google Scholar 

  43. SM Fixsen, MT Howard 2010 J Mol Biol 399:385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Z Stoytcheva et al 2006 Mol Cell Biol 26:9177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. HC Lin et al 2015 Science 349:91

    Google Scholar 

  46. JE Fletcher et al 2000 RNA 6:1573

    Google Scholar 

  47. TE Dever 2002 Cell 108:545

    Google Scholar 

  48. F Zhang, AG Hinnebusch 2011 Nucleic Acids Res 39:3128

    Google Scholar 

  49. MV Gerashchenko et al 2012 Proc Natl Acad Sci U S A 109:17394

    Google Scholar 

  50. MV Gerashchenko, VN Gladyshev 2014 Nucleic Acids Res 42:e134

    Google Scholar 

  51. S Lee et al 2012 Proc Natl Acad Sci U S A 109:E2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge Dr. Dolph Hatfield and Bradley Carlson (NIH) for their insight and experimental contributions towards the development of ribosome profiling for analysis of selenoprotein expression; Brian Dalley, Lisa Baird, and Christine Anderson (University of Utah) for their technical expertise; and Drs. Raymond Gesteland and John Atkins (University of Utah) for their many years of encouragement and advice. This work was supported by NIH grants GM114291 (M.T.H.) and ES0022716 (M.T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Howard, M.T. (2016). Probing Selenoprotein Translation by Ribosome Profiling. In: Hatfield, D., Schweizer, U., Tsuji, P., Gladyshev, V. (eds) Selenium. Springer, Cham. https://doi.org/10.1007/978-3-319-41283-2_3

Download citation

Publish with us

Policies and ethics