Skip to main content

A Toolkit to Detect Planets Around Active Stars

  • Chapter
  • First Online:
Radial-velocity Searches for Planets Around Active Stars

Part of the book series: Springer Theses ((Springer Theses))

  • 370 Accesses

Abstract

In this chapter, I present a recipe to detect exoplanet orbits in RV observations in the presence of noise arising from stellar activity. I start by introducing Gaussian processes , which are a powerful and elegant way to model correlated noise. I will start from the very basics of Gaussian distributions, leading up to how I incorporate them in my model to account for stellar activity signals. I then present the model that I use to fit RV observations, and describe the Monte Carlo Markov Chain procedure that I apply to determine the best-fitting parameters of this model.

This chapter uses material from, and is based on, Haywood et al., 2014, MNRAS, 443, 2517.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This lecture is posted online at http://videolectures.net/gpip06_mackay_gpb/ (link correct as of March 2015).

  2. 2.

    Remember this for later; it provides insight on the form of Eq. 3.16.

  3. 3.

    They cannot be completely identical since the covariance functions used with Gaussian processes are always positive definite, whereas the autocorrelation function oscillates about zero. They are very similar though (see Fig. 3.7), and it would be interesting to find out how they are related.

  4. 4.

    The true anomaly is “the angle between the direction of periastron and the current position of the planet measured from the barycentric focus of the ellipse” (Perryman 2011).

References

  • Aigrain S, Hodgkin ST, Irwin MJ, Lewis JR, Roberts SJ (2015) Monthly notices of the royal astronomical society 447:2880

    Article  ADS  Google Scholar 

  • Aigrain S, Pont F, Zucker S (2012) Monthly notices of the royal astronomical society 419:3147

    Article  ADS  Google Scholar 

  • Ambikasaran S, Foreman-Mackey D, Greengard L, Hogg DW, O’Neil M (2014) Numerical analysis, pre-print (arXiv:1403.6015)

  • Baluev RV (2013) Monthly notices of the royal astronomical society 429:2052

    Article  ADS  Google Scholar 

  • Barclay T, Endl M, Huber D, Foreman-Mackey D, Cochran WD, MacQueen PJ, Rowe JF, Quintana EV (2015) Astrophys J 800:46

    Article  ADS  Google Scholar 

  • Chib S, Jeliazkov I (2001) American statistical association portal : marginal likelihood from the metropolis–hastings output. J Am Stat Assoc, 96:453

    Google Scholar 

  • Crossfield IJM et al (2015) Astrophys J, pre-print (arXiv:1501.03798)

  • Czekala I, Andrews SM, Mandel KS, Hogg DW, Green GM (2014) Astrophys J, pre-print (arXiv:1412.5177)

  • Ford EB (2006) Astrophys J 642:505

    Article  ADS  Google Scholar 

  • Foreman-Mackey D, Hogg DW, Morton TD (2014) Astrophys J 795:64

    Article  ADS  Google Scholar 

  • Foreman-Mackey D, Montet BT, Hogg DW, Morton TD, Wang D, Schölkopf B (2015) Astrophys J, pre-print (arXiv:1502.04715)

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. Chapman and Hall, London. (CRC, Boca Raton)

    Google Scholar 

  • Gibson NP, Aigrain S, Roberts S, Evans TM, Osborne M, Pont F (2011) Monthly notices of the royal astronomical society 419:2683

    Article  ADS  Google Scholar 

  • Gregory PC (2007) Monthly notices of the royal astronomical society 381:1607

    Article  ADS  Google Scholar 

  • Grunblatt SK, Howard AW, Haywood RD (2015) Astrophys J, pre-print (arXiv:1501.00369)

  • Haywood RD et al (2014) Monthly notices of the royal astronomical society, 443(3):2517–2531

    Google Scholar 

  • Jeffreys SH (1961) The theory of probability. Oxford University Press, Oxford

    Google Scholar 

  • Knutson HA, Charbonneau D, Allen LE, Burrows A, Megeath ST (2008) Astrophys J 673:526

    Article  ADS  Google Scholar 

  • Lomb NR (1976) Astrophys Space Sci 39:447

    Article  ADS  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    Article  ADS  Google Scholar 

  • Perryman M (2011) The exoplanet handbook by michael perryman

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA (1986) Numerical recipes. The art of scientific computing, Vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Massachusetts

    Google Scholar 

  • Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S (2012) Philosophical transactions of the royal society a: mathematical. Phys Eng Sci 371:20110550

    Article  MathSciNet  Google Scholar 

  • Scargle JD (1982) Astrophys J 263:835

    Article  ADS  Google Scholar 

  • Zechmeister M, Kürster M (2009) Astron Astrophys 496:577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaëlle D. Haywood .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haywood, R.D. (2016). A Toolkit to Detect Planets Around Active Stars. In: Radial-velocity Searches for Planets Around Active Stars. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41273-3_3

Download citation

Publish with us

Policies and ethics