Skip to main content

Zero-Temperature Dynamics

  • Chapter
  • First Online:
Spin Glasses

Part of the book series: Springer Theses ((Springer Theses))

  • 904 Accesses

Abstract

In numerous glassy systems, such as electron [Efr75, Dav82, Pan05, Pal12], structural [Wya12, Ler13, Kal14] and spin glasses [Tho77, Dou10, Sha14], it is possible to identify a set of states that exhibit a distribution of soft modes , unrelated to any symmetry, that reaches zero asymptotically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By pseudogap we mean a gap with zero width, i.e. the distribution is zero only in a point.

  2. 2.

    When we say stable we mean that all the local stabilities are positive. In a thermodynamic sense those states are metastable.

  3. 3.

    The magnetization is \(M=\sum _{\varvec{x}}^N s_{\varvec{x}}\).

  4. 4.

    We say at least one, and not one and only one spin, because in principle the average number of triggered spins could be larger than one, and the avalanches stop due to the fluctuations in the number of triggered spins.

  5. 5.

    The second of the two terms on the r.h.s. of Eq. 5.22 comes from Eq. 5.21. To find the first one it is necessary to calculate

    $$\begin{aligned} \left\langle {\lambda (m)} \right\rangle _{m'} = \frac{\int _0^{\lambda (m')} \lambda \rho (\lambda )d\lambda }{\int _0^{\lambda (m')} \rho (\lambda )d\lambda },{(5.24)} \end{aligned}$$

    where the maximum stability of the chosen set, \(\lambda (m')\), can be evaluated through Eq. (5.17). Remembering that \(m'=2m\), one obtains \(\left\langle {\lambda (m)} \right\rangle _{m'}\sim \left( \frac{m}{N}\right) ^{\frac{1}{1+\theta }}\), that multiplied by m gives the term that appears in Eq. (5.22).

  6. 6.

    We neglect the fluctuations of \(\sum _{\varvec{x}}\lambda _{\varvec{x}}\), since that sum is always positive and when m is large its fluctuations are small compared to its expectation value.

  7. 7.

    In this chapter the averages \(\left\langle {\ldots } \right\rangle \) are averages over the avalanches.

  8. 8.

    With at most logarithmic corrections, that can be neglected in this argument.

  9. 9.

    It would be exactly the return probability of the random walk if the avalanche started with \(n_\mathrm {unst}=0\).

  10. 10.

    We use an A, that stands for aleatory, because the R of random was already picked for the reluctant algorithm.

  11. 11.

    The arguments of Sect. 5.3 for the scaling of \(\left\langle {\Delta M} \right\rangle \) and \(\left\langle {n} \right\rangle \) apply also to A and R dynamics. One obtains \(\left\langle {\Delta M} \right\rangle \sim \sqrt{N}\) for both the dynamics, \(\left\langle {n} \right\rangle \sim N\) for A and \(\left\langle {n} \right\rangle \sim N^{3/2}\) for R dynamics. Numerical simulations seem compatible with these trends in the limit of very large systems.

  12. 12.

    In G avalanches \(n_\mathrm {unst}^*\) grows logarithmically, \(n_\mathrm {unst}^*\sim \log (N)\). With R dynamics we have little data because our measurements only go up to \(n_\mathrm {unst}=24\). We deduce a roughly linear scaling \(n_\mathrm {unst}^*\sim N\).

References

  1. J.C. Andresen, Z. Zhu, R.S. Andrist, H.G. Katzgraber, V. Dobrosavljević, G.T. Zimanyi, Phys. Rev. Lett. 111, 097203 (2013). doi:10.1103/PhysRevLett.111.097203; arXiv:1210.3796; http://link.aps.org/doi/10.1103/PhysRevLett.111.097203

  2. J.H. Davies, P.A. Lee, T.M. Rice, Phys. Rev. Lett. 49, 758–761 (1982). doi:10.1103/PhysRevLett.49.758; http://link.aps.org/doi/10.1103/PhysRevLett.49.758

    Google Scholar 

  3. P.L. Doussal, M. Müller, K.J. Wiese, EPL (Europhys. Lett.) 91, 57004 (2010). doi:10.1209/0295-5075/91/57004; http://stacks.iop.org/0295-5075/91/i=5/a=57004

    Google Scholar 

  4. R. Eastham, R.A. Blythe, A.J. Bray, M.A. Moore, Phys. Rev. B 74, 020406 (2006). doi:10.1103/PhysRevB.74.020406. arXiv:cond-mat/0601402

    Article  ADS  Google Scholar 

  5. A.L. Efros, B.I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975). doi:10.1088/0022-3719/8/4/003; http://stacks.iop.org/0022-3719/8/i=4/a=003

    Google Scholar 

  6. D. Fisher, Phys. Rep. 301, 113–150 (1998). ISSN 0370-1573. doi:10.1016/S0370-1573(98)00008-8; http://www.sciencedirect.com/science/article/pii/S0370157398000088

    Google Scholar 

  7. H. Horner, Eur. Phys. J. B 60, 413 (2008). doi:10.1140/epjb/e2008-00017-1. arXiv:0707.2714

    Article  ADS  MathSciNet  Google Scholar 

  8. Y. Kallus, S. Torquato, Phys. Rev. E 90, 022114 (2014). doi:10.1103/PhysRevE.90.022114; http://link.aps.org/doi/10.1103/PhysRevE.90.022114

  9. P. Le Doussal, M. Müller, K.J. Wiese, Phys. Rev. B 85, 214402 (2012). doi:10.1103/PhysRevB.85.214402; http://link.aps.org/doi/10.1103/PhysRevB.85.214402

  10. E. Lerner, G. During, M. Wyart, Soft Matter 9, 8252–8263 (2013). doi:10.1039/C3SM50515D; http://dx.doi.org/10.1039/C3SM50515D

    Google Scholar 

  11. M. Mueller, M. Wyart, Annu. Rev. Condens. Matter Phys. 6, 177–200 (2015). doi:10.1146/annurev-conmatphys-031214-014614; arXiv:1406.7669; http://dx.doi.org/10.1146/annurev-conmatphys-031214-014614

    Google Scholar 

  12. M. Palassini, M. Goethe, J. Phys.: Conf. Ser. 376, 012009 (2012). doi:10.1088/1742-6596/376/1/012009; http://stacks.iop.org/1742-6596/376/i=1/a=012009

    Google Scholar 

  13. R.G. Palmer, C.M. Pond, J. Phys. F: Metal Phys. 9, 1451 (1979). doi:10.1088/0305-4608/9/7/024; http://stacks.iop.org/0305-4608/9/i=7/a=024

    Google Scholar 

  14. S. Pankov, V. Dobrosavljević, Phys. Rev. Lett. 94, 046402 (2005). doi:10.1103/PhysRevLett.94.046402; http://link.aps.org/doi/10.1103/PhysRevLett.94.046402

  15. G. Parisi, Fractals 11, 161 (2003). doi:10.1142/S0218348X03001823; http://www.worldscientific.com/doi/abs/10.1142/S0218348X03001823

    Google Scholar 

  16. F. Pázmándi, G. Zaránd, G. T. Zimányi, Phys. Rev. Lett. 83, 1034–1037 (1999). doi:10.1103/PhysRevLett.83.1034; arXiv:cond-mat/9902156; http://link.aps.org/doi/10.1103/PhysRevLett.83.1034

    Google Scholar 

  17. J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, J.D. Shore, Phys. Rev. Lett. 70, 3347–3350 (1993). doi:10.1103/PhysRevLett.70.3347; http://link.aps.org/doi/10.1103/PhysRevLett.70.3347

    Google Scholar 

  18. J. Sethna, K. Dahmen, C. Myers, Nature 410, 242–250 (2001). doi:10.1038/35065675. March

    Article  ADS  Google Scholar 

  19. A. Sharma, A. Andreanov, M. Müller, Phys. Rev. E 90, 042103 (2014). doi:10.1103/PhysRevE.90.042103; http://link.aps.org/doi/10.1103/PhysRevE.90.042103

  20. D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1792–1796 (1975). doi:10.1103/PhysRevLett.35.1792; http://link.aps.org/doi/10.1103/PhysRevLett.35.1792

    Google Scholar 

  21. D.J. Thouless, P.W. Anderson, R.G. Palmer, Phil. Mag. 35, 593–601 (1977). doi:10.1080/14786437708235992; http://dx.doi.org/10.1080/14786437708235992

    Google Scholar 

  22. M. Wyart, Phys. Rev. Lett. 109, 125502 (2012). doi:10.1103/PhysRevLett.109.125502; http://link.aps.org/doi/10.1103/PhysRevLett.109.125502

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Baity Jesi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baity Jesi, M. (2016). Zero-Temperature Dynamics. In: Spin Glasses. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41231-3_5

Download citation

Publish with us

Policies and ethics