Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 459 Accesses

Abstract

The environment in which a population evolves can have a crucial impact on selection. We study evolutionary dynamics in finite populations of fixed size in a changing environment. The population dynamics are driven by birth and death events. The rates of these events may vary in time depending on the state of the environment, which follows an independent Markov process. We develop a general theory for the fixation probability of a mutant in a population of wild-types, and for mean unconditional and conditional fixation times. We apply our theory to evolutionary games for which the payoff structure varies in time. The mutant can exploit the environmental noise; a dynamic environment that switches between two states can lead to a probability of fixation that is higher than in any of the individual environmental states. We provide an intuitive interpretation of this surprising effect. We also investigate stationary distributions when mutations are present in the dynamics. In this regime, we find two approximations of the stationary measure. One works well for rapid switching, the other for slowly fluctuating environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As the backward equation is the adjoint of the forward equation, the column vectors of probability are transposed to give row vectors.

  2. 2.

    Payoff parameters are the same in Figs. 3.3 and 3.4. Although system-size and selection intensity are different, these parameters do not affect the qualitative features of the gradient of selection.

References

  1. P. Ashcroft, P.M. Altrock, T. Galla, Fixation in finite populations evolving in fluctuating environments. J. R. Soc. Interface 11, 20140663 (2014)

    Article  Google Scholar 

  2. S. Franzenburg, S. Fraune, P. Altrock, S. Kuenzel, J. Baines, A. Traulsen, T.C.G. Bosch, Bacterial colonization of hydra hatchlings follows a robust temporal pattern. ISME J. 7, 781 (2013)

    Article  Google Scholar 

  3. M. McFall-Ngai, M.G. Hadfield, T.C. Bosch, H.V. Carey, T. Domazet-Lošo, A.E. Douglas, N. Dubilier, G. Eberl, T. Fukami, S.F. Gilbert et al., Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U.S.A. 110, 3229 (2013)

    Article  ADS  Google Scholar 

  4. C.P. Goulart, M. Mahmudi, K.A. Crona, S.D. Jacobs, M. Kallmann, B.G. Hall, D.C. Greene, M. Barlow, Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes. PLoS ONE 8, e56040 (2013)

    Article  ADS  Google Scholar 

  5. E. Kussell, R. Kishony, N.Q. Balaban, S. Leibler, Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807 (2005)

    Article  Google Scholar 

  6. M. Acar, J.T. Mettetal, A. van Oudenaarden, Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471 (2008)

    Article  Google Scholar 

  7. E. Kussel, S. Leibler, Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075 (2005)

    Article  ADS  Google Scholar 

  8. S. Leibler, E. Kussell, Individual histories and selection in heterogeneous populations. Proc. Natl. Acad. Sci. U.S.A. 107, 13183 (2010)

    Article  ADS  Google Scholar 

  9. O. Rivoire, S. Leibler, The value of information for populations in varying environments. J. Stat. Phys. 142, 1124 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. U. Dobramysl, U.C. Täuber, Environmental versus demographic variability in two-species predator-prey models. Phys. Rev. Lett. 110, 048105 (2013)

    Article  ADS  Google Scholar 

  11. M. Assaf, M. Mobilia, E. Roberts, Cooperation dilemma in finite populations under fluctuating environments. Phys. Rev. Lett. 111, 238101 (2013)

    Article  ADS  Google Scholar 

  12. N. Goel, N. Richter-Dyn, Stochastic Models in Biology (Academic Press, New York, 1974)

    Google Scholar 

  13. M.A. Nowak, Evolutionary Dynamics (Harvard University Press, Cambridge MA, 2006)

    MATH  Google Scholar 

  14. A. Traulsen, C. Hauert, Stochastic evolutionary game dynamics, in Reviews of Nonlinear Dynamics and Complexity, vol. II, ed. by H.G. Schuster (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  15. S. Karlin, H.M. Taylor, A Second Course in Stochastic Processes (Academic Press, New York, 1981)

    MATH  Google Scholar 

  16. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007)

    MATH  Google Scholar 

  17. T. Antal, I. Scheuring, Fixation of strategies for an evolutionary game in finite populations. Bull. Math. Biol. 68, 1923 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. P.M. Altrock, A. Traulsen, Fixation times in evolutionary games under weak selection. New J. Phys. 11, 013012 (2009)

    Article  ADS  Google Scholar 

  19. M. Mobilia, Oscillatory dynamics in rock-paper-scissors games with mutations. J. Theor. Biol. 264, 1 (2010)

    Article  MathSciNet  Google Scholar 

  20. R.C. MacLean, A. Fuentes-Hernandez, D. Greig, L.D. Hurst, I. Gudelj, A mixture of "cheats" and "co-operators" can enable maximal group benefit. PLoS Biol. 8, e1000486 (2010)

    Article  Google Scholar 

  21. J. Gore, H. Youk, A. van Oudenaarden, Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253 (2009)

    Article  ADS  Google Scholar 

  22. R.C. Maclean, I. Gudelj, Resource competition and social conflict in experimental populations of yeast. Nature 441, 498 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ashcroft .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashcroft, P. (2016). Finite Populations in Switching Environments. In: The Statistical Physics of Fixation and Equilibration in Individual-Based Models. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41213-9_3

Download citation

Publish with us

Policies and ethics