Skip to main content
  • 1198 Accesses

Abstract

The generalized hydrodynamic equations derived from various kinetic equations for nonequilibrium ensembles in the previous chapters are capable of describing transport processes and hydrodynamic phenomena in fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the fluid is chemically reactive, there appears a dissipation term representing reaction rates in (9.2). See Chap. 2 for the phenomenological treatment of chemical reacting fluids.

  2. 2.

    It, in fact, should be 13 plus \(3\left( r-1\right) \) moments if the independent diffusion fluxes are included. We use this pure fluid terminology for want of a more appropriate terminology, even if the system is a mixture and diffusions are present.

  3. 3.

    The nonlinear factor \(q_{n}^{-1}\) can be replaced by the equivalent quantity \(q_{L}=\sinh ^{-1}\Gamma /\Gamma \), where \(\Gamma ^{2}\) is a quadratic form of the thermodynamic gradients in (9.58)–(9.61). The details about this replacement procedure is discussed below; see the steps leading to (9.85)–(9.88) of this chapter.

  4. 4.

    The compressibility \(\kappa _{\widehat{\Psi }}^{*}\) is defined for the system evolving on the constant calortropy surface \(\widehat{\Psi }\) because the generalized hydrodynamic equations used here are subject to the calortropy differential as shown in the kinetic theory chapter of this work. This compressibility tends to the usual adiabatic compressibility \(\kappa _{S}^{*}\) as the system tends to equilibrium in the limit of \(N_{\delta }\rightarrow 0\). Equation (9.111) can be shown as follows: Since the calortropy density is described by an exact differential form in the thermodynamic space in the thermodynamic manifold for the present irreversible system, we find [30]

    $$\begin{aligned} \gamma _{0}&=\left( \frac{\partial \widehat{\Psi }}{\partial T}\right) _{p}\!/\!\left( \frac{\partial \widehat{\Psi }}{\partial T}\right) _{v} =\frac{\partial \!\left( \widehat{\Psi },p\right) }{\partial \!\left( T,p\right) }\frac{\partial \!\left( T,v\right) }{\partial \!\left( \widehat{\Psi },v\right) }\\&=\frac{\partial \!\left( v,p\right) }{\partial \!\left( T,p\right) } \frac{\partial \!\left( \widehat{\Psi },p\right) }{\partial \!\left( \widehat{\Psi },v\right) }=\left( \frac{\partial v}{\partial p}\right) _{T}\!/\!\left( \frac{\partial v}{\partial p}\right) _{\widehat{\Psi }}. \end{aligned}$$

    This proves (9.111).

References

  1. M.N. Kogan, Rarefied Gas Dynamics (Plenum, New York, 1969); L. Talbot, Rarefied Gas Dynamics (Academic, New York, 1961); B.C. Eu, in Proceedings of the 14th International Symposium on Rarefied Gas Dynamics, ed. by H. Oguchi (University of Tokyo, 1984), pp. 27–34; C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988); R.E. Khayat, B.C. Eu, Prog. Astronaut. Aeronaut. 118, 396 (1989)

    Google Scholar 

  2. See Refs. [15], [16], and [17] below

    Google Scholar 

  3. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)

    MATH  Google Scholar 

  4. B.C. Eu, J. Chem. Phys. 76, 2618 (1982); B.C. Eu, A. Wagh, Phys. Rev. B 27, 1037 (1983)

    Google Scholar 

  5. B.C. Eu, Kinetic Theory and Irreversible Thermodynamics (Wiley, New York, 1992)

    Google Scholar 

  6. B.C. Eu, Nonequilibrium Statistical Mechanics (Kluwer, Dordrecht, 1998)

    Book  MATH  Google Scholar 

  7. B.C. Eu, Generalized hydrodynamics and irreversible thermodynamics in Transport in Transition Regimes, ed. by N. Ben Abdallah, A. Arnold, P. Dagond, I. Gamba, R. Glassey, C.D. Levermore, C. Ringhofer. The Institute for Mathematics and its Applications, vol. 135 (Springer, Heidelberg, 2003), pp. 155–176

    Google Scholar 

  8. B.C. Eu, Philos. Trans. Roy. Soc. London A 362, 1553 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1959)

    MATH  Google Scholar 

  10. G.K. Batchelor, Fluid Dynamics (Cambridge, London, 1967)

    Google Scholar 

  11. Lord Rayleigh, Theory of Sound (Dover, New York, 1945)

    MATH  Google Scholar 

  12. S.R. de Groot, P. Mazur, Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

    Google Scholar 

  13. L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931)

    Google Scholar 

  14. M. Al-Ghoul, B.C. Eu, J. Chem. Phys. 115, 8481 (2001)

    Article  ADS  Google Scholar 

  15. M. Al-Ghoul, B.C. Eu, Phys. Rev. E 56, 2981 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Al-Ghoul, B.C. Eu, Phys. Rev. Lett. 86, 4294 (2001)

    Article  ADS  Google Scholar 

  17. M. Al-Ghoul, B.C. Eu, Phys. Rev. E 64, 046303 (2001)

    Article  ADS  Google Scholar 

  18. S. Chapman, T.G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd edn. (Cambridge, U. P., London, 1970)

    Google Scholar 

  19. J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972)

    Google Scholar 

  20. H. Schlichting, Boundary-Layer Theory, 7th edn. (McGraw-Hill, New York, 1979)

    Google Scholar 

  21. R.E. Khayat, Ph.D. thesis, McGill University, Montreal, 1989

    Google Scholar 

  22. R.E. Khayat, B.C. Eu, Phys. Rev. A 38, 2492 (1988); R.E. Khayat, B.C. Eu, Prog. Astronaut. Aeronaut. 118, 396 (1989)

    Google Scholar 

  23. R.E. Khayat, B.C. Eu, Phys. Rev. A 39, 728 (1989)

    Article  ADS  Google Scholar 

  24. B.C. Eu, R.E. Khayat, Rheologica Acta 30, 204 (1991)

    Article  Google Scholar 

  25. B.C. Eu, Transport Coefficients of Fluids (Springer, Heidelberg, 2006)

    Google Scholar 

  26. W.G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991) (M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987)

    Google Scholar 

  27. W.G. Hoover, D.J. Evans, R.B. Hickman, A.J.C. Ladd, W.T. Ashurst, B. Moran, Phys. Rev. A. 22, 1690 (1980)

    Article  ADS  Google Scholar 

  28. R. Laghaei, A.E. Nasrabad, B.C. Eu, J. Chem. Phys. 123, 234507 (2005)

    Article  ADS  Google Scholar 

  29. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, New York, 1960)

    Google Scholar 

  30. B.C. Eu, M. Al-Ghoul, Chemical Thermodynamics (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  31. A. Jeffrey, Quasilinear Hyperbolic Systems and Waves (Pitman, London, 1976)

    MATH  Google Scholar 

  32. M. Al-ghoul, B.C. Eu, Physica D 97, 531 (1996); 90, 119 (1996)

    Google Scholar 

  33. E.E. Selkov, Eur. J. Biochem. 4, 79 (1968)

    Article  Google Scholar 

  34. D.K. Bhattacharya, B.C. Eu, Phys. Rev. A 35, 4850 (1987)

    Article  ADS  Google Scholar 

  35. B.C. Eu, R.E. Khayat, G.D. Billing, C. Nyeland, Can. J. Phys. 65, 1090 (1987)

    Article  ADS  Google Scholar 

  36. B.C. Eu, A. Wagh, Phys. Rev. B 27, 1037 (1983)

    Article  ADS  Google Scholar 

  37. B.C. Eu, Generalized Thermodynamics (Kluwer, Dordrecht, 2002)

    Book  MATH  Google Scholar 

  38. R.S. Myong, Phys. Fluids 23, 012002 (2011)

    Article  ADS  Google Scholar 

  39. R.S. Myong, J. Comp. Phys. 168, 47 (2001)

    Article  ADS  Google Scholar 

  40. N.T.P. Le, H. Xiao, R.S. Myong, J. Comp. Phys. 273, 160 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Xiao, R.S. Myong, Comput. Fluids 105, 179 (2014)

    Article  MathSciNet  Google Scholar 

  42. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994)

    Google Scholar 

  43. J.C. Maxwell, Philos. Trans. Roy. Soc. London 157, 49 (1867)

    Article  Google Scholar 

  44. A. Kundt, E. Warburg, Pggendorff’s Ann. Phys. (Leipzig) 155, 337 (1875); 155, 525 (1875)

    Google Scholar 

  45. J.C. Maxwell, Collected Works of J. C. Maxwell, vol. 2 (Cambridge U. P., London, 1927), p. 682

    Google Scholar 

  46. M. Knudsen, Ann. Phys. 28, 75 (1909); M. Knudsen, The Kinetic Theory of Gases (Methuen, London, 1934)

    Google Scholar 

  47. W. Gaede, Ann. Phys. Ser. 4(41), 289 (1913)

    Article  ADS  Google Scholar 

  48. B.C. Eu, Phys. Rev. 40, 6395 (1989)

    Article  ADS  Google Scholar 

  49. H.G.C. Werij, J.P. Woerdman, J.J. Beenakker, I. Kuscer, Phys. Rev. Lett. 52, 2237 (1984)

    Article  ADS  Google Scholar 

  50. V.N. Panfilov, V.P. Strunin, P.L. Chapovskii, Zh Eksp, Teor. Fiz. 85, 881 (1983) [Sov. Phys. JETP 58, 510 (1983)]; H.G.C. Werij, J.E.M. Haverkort, P.C.M. Planken, E.R. Eliel, J.P. Woerdman, S.N. Atutov, P.L. Chapovskii, F. Kh. Gel’mukhanov, Phys. Rev. Lett. 58, 2660 (1987)

    Google Scholar 

  51. R.W.M. Hoogeveen, R.J.C. Spreeuw, L.J.F. Hermans, Phys. Rev. Lett. 59, 447 (1987)

    Article  ADS  Google Scholar 

  52. R.W.M. Hoogeveen, G.J. der Meer, L.J.F. Hermans, A.V. Ghiner, I. Kuscer, Phys. Rev. A 39, 5539 (1989)

    Article  ADS  Google Scholar 

  53. B.C. Eu, K. Mao, Phys. A 180, 65 (1992); 184, 187 (1992)

    Google Scholar 

  54. K. Koffi, Y. Andreopoulos, C.B. Watkins, Phys. Fluids 20, 126102 (2008)

    Article  ADS  Google Scholar 

  55. J. Percus, G. Yevick, Phys. Rev. 110, 1 (1958); J.K. Percus. Phys. Rev. Lett. 8, 462 (1962)

    Google Scholar 

  56. G.S. Rushbrooke, H.I. Scoins, Proc. Roy. Soc. A 216, 203 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  57. Y.G. Ohr, B.C. Eu, Phys Lett. A 101, 338 (1984); Y.G. Ohr, B.C. Eu. Bull. Korean Chem. Soc. 7, 204 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Chan Eu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eu, B.C. (2016). Generalized Hydrodynamics and Transport Processes. In: Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-41147-7_9

Download citation

Publish with us

Policies and ethics