Skip to main content

Cosmological Perturbations

  • Chapter
  • First Online:
Classical and Quantum Cosmology

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2554 Accesses

Abstract

The cosmological principle is an idealization of what we observe in nature. At late times, matter does not occupy the whole space uniformly due to gravitational clustering. Near the big bang, a homogeneous and isotropic universe is not the most general initial condition. Even if one chose FLRW as the classical initial state at very early times, quantum fluctuations of particle fields would be of the same order of the particle horizon, and they would give rise to strong inhomogeneities in the metric and matter energy density. On the other hand, CMB anisotropies are rather small and a perfect FLRW background is still a good lowest-order approximation. A reasonable hypothesis, verified by experiments, is that CMB anisotropies come from these metric and density perturbations. Because the effect is so small, the formalism of linear perturbations is well suited for our purpose [1–4]. One should also explain why non-linear inhomogeneities [5] do not play a major role in the early universe. We shall postpone the issue to Chap. 5 In parallel, late-time non-linear large-scale structures and the possible detection of tiny primordial non-linear effects require to go beyond the first perturbative order. In preparation of this, we review some results on linear and non-linear perturbation theory.

Yet it is possible to see peril in the finding of ultimate perfection. It is clear that the ultimate pattern contains its own fixity. In such perfection, all things move toward death.

                   — Frank Herbert, Dune

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This actually constitutes a major problem in the hot big bang model, which we shall meet soon. The problem will be solved eventually, hence the flatness assumption is justified.

  2. 2.

    The calculus of metric variations runs along exactly the same steps when h μ ν is interpreted as an infinitesimal variation of the metric rather than a physical metric perturbation. In that case, δ g μ ν h μ ν , δ g μ ν ↔ − h μ ν and (2.22) stems from (3.87).

References

  1. H. Kodama, M. Sasaki, Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1 (1984)

    Article  ADS  Google Scholar 

  2. V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.M. Bardeen, Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983)

    Article  ADS  Google Scholar 

  5. D.S. Salopek, J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models. Phys. Rev. D 42, 3936 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Wands, K.A. Malik, D.H. Lyth, A.R. Liddle, A new approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D 62, 043527 (2000). [arXiv:astro-ph/0003278]

  7. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1973)

    Google Scholar 

  8. E. Lifshitz, On the gravitational stability of the expanding universe. Zh. Eksp. Teor. Fiz. 16, 587 (1946) [J. Phys. JETP 10, 116 (1946)]

    Google Scholar 

  9. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, London, 2007)

    MATH  Google Scholar 

  10. A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation. Sitz.-ber. Kgl. Preuss. Akad. Wiss. 1916, 688 (1916)

    MATH  Google Scholar 

  11. A. Einstein, Über Gravitationswellen. Sitz.-ber. Kgl. Preuss. Akad. Wiss. 1918, 154 (1918)

    MATH  Google Scholar 

  12. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). [arXiv:1602.03837]

  13. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016). [arXiv:1602.03840]

  14. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Observing gravitational-wave transient GW150914 with minimal assumptions. Phys. Rev. D 93, 122004 (2016). [arXiv:1602.03843]

  15. https://losc.ligo.org/events/GW150914

  16. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016). [arXiv:1602.03841]

  17. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016). [arXiv:1606.04855]

  18. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Binary black hole mergers in the first Advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016). [arXiv:1606.04856]

  19. G.F.R. Ellis, M. Bruni, Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 40, 1804 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  20. G.F.R. Ellis, J. Hwang, M. Bruni, Covariant and gauge-independent perfect-fluid Robertson–Walker perturbations. Phys. Rev. D 40, 1819 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Bruni, G.F.R. Ellis, P.K.S. Dunsby, Gauge invariant perturbations in a scalar field dominated universe. Class. Quantum Grav. 9, 921 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. M. Bruni, P.K.S. Dunsby, G.F.R. Ellis, Cosmological perturbations and the physical meaning of gauge-invariant variables. Astrophys. J. 395, 34 (1992)

    Article  ADS  Google Scholar 

  23. P.K.S. Dunsby, M. Bruni, G.F.R. Ellis, Covariant perturbations in a multifluid cosmological medium. Astrophys. J. 395, 54 (1992)

    Article  ADS  Google Scholar 

  24. D. Langlois, F. Vernizzi, Evolution of non-linear cosmological perturbations. Phys. Rev. Lett. 95, 091303 (2005). [arXiv:astro-ph/0503416]

  25. D. Langlois, F. Vernizzi, Conserved non-linear quantities in cosmology. Phys. Rev. D 72, 103501 (2005). [arXiv:astro-ph/0509078]

  26. D. Langlois, F. Vernizzi, Nonlinear perturbations for dissipative and interacting relativistic fluids. JCAP 0602, 014 (2006). [arXiv:astro-ph/0601271]

  27. D. Langlois, F. Vernizzi, Nonlinear perturbations of cosmological scalar fields. JCAP 0702, 017 (2007). [arXiv:astro-ph/0610064]

  28. A. Naruko, A general proof of the equivalence between the δ N and covariant formalisms. Europhys. Lett. 98, 69001 (2012). [arXiv:1202.1516]

  29. G.L. Comer, N. Deruelle, D. Langlois, J. Parry, Growth or decay of cosmological inhomogeneities as a function of their equation of state. Phys. Rev. D 49, 2759 (1994)

    Article  ADS  Google Scholar 

  30. J. Parry, D.S. Salopek, J.M. Stewart, Solving the Hamilton–Jacobi equation for general relativity. Phys. Rev. D 49, 2872 (1994). [arXiv:gr-qc/9310020]

  31. G.I. Rigopoulos, E.P.S. Shellard, The separate universe approach and the evolution of nonlinear superhorizon cosmological perturbations. Phys. Rev. D 68, 123518 (2003). [arXiv:astro-ph/0306620]

  32. G.I. Rigopoulos, E.P.S. Shellard, Non-linear inflationary perturbations. JCAP 0510, 006 (2005). [arXiv:astro-ph/0405185]

  33. G.I. Rigopoulos, E.P.S. Shellard, B.J.W. van Tent, Non-linear perturbations in multiple-field inflation. Phys. Rev. D 73, 083521 (2006). [arXiv:astro-ph/0504508]

  34. A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  35. M. Sasaki, E.D. Stewart, A general analytic formula for the spectral index of the density perturbations produced during inflation. Prog. Theor. Phys. 95, 71 (1996). [arXiv:astro-ph/9507001]

  36. M. Sasaki, T. Tanaka, Super-horizon scale dynamics of multi-scalar inflation. Prog. Theor. Phys. 99, 763 (1998). [arXiv:gr-qc/9801017]

  37. D.H. Lyth, K.A. Malik, M. Sasaki, A general proof of the conservation of the curvature perturbation. JCAP 0505, 004 (2005). [arXiv:astro-ph/0411220]

  38. R.J. Adler, The Geometry of Random Fields (Wiley, London, 1981)

    MATH  Google Scholar 

  39. R.J. Adler, J. Taylor, Random Fields and Geometry (Springer, New York, 2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calcagni, G. (2017). Cosmological Perturbations. In: Classical and Quantum Cosmology. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-41127-9_3

Download citation

Publish with us

Policies and ethics