Skip to main content

Schwann Cell and Axon: An Interlaced Unit—From Action Potential to Phenotype Expression

  • Chapter
  • First Online:
Glial Cells in Health and Disease of the CNS

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 949))

Abstract

Here we propose a model of a peripheral axon with a great deal of autonomy from its cell body—the autonomous axon—but with a substantial dependence on its ensheathing Schwann cell (SC), the axon-SC unit. We review evidence in several fields and show that (i) axons can extend sprouts and grow without the concurrence of the cell body, but regulated by SCs; (ii) axons synthesize their proteins assisted by SCs that supply them with ribosomes and, probably, with mRNAs by way of exosomes; (iii) the molecular organization of the axoplasm, i.e., its phenotype, is regulated by the SC, as illustrated by the axonal microtubular content, which is down-regulated by the SC; and (iv) the axon has a program for self-destruction that is boosted by the SC. The main novelty of this model axon-SC unit is that it breaks with the notion that all proteins of the nerve cell are specified by its own nucleus. The notion of a collaborative specification of the axoplasm by more than one nucleus, which we present here, opens a new dimension in the understanding of the nervous system in health and disease and is also a frame of reference to understand other tissues or cell associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguayo AJ, Bray GM, Rasminsky M, Zwimpfer T, Carter D, Vidal-Sanz M (1990) Synaptic connections made by axons regenerating in the central nervous system of adult mammals. J Exp Biol 153:199–224

    CAS  PubMed  Google Scholar 

  • Alvarez J (2001) The autonomous axon: a model based on local synthesis of proteins. Biol Res 34(2):103–109

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Benech CR (1983) Axoplasmic incorporation of amino acids in a myelinated fiber exceeds that of its soma: a radioautographic study. Exp Neurol 82(1):25–42

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Zarour J (1983) Microtubules in short and in long axons of the same caliber: implications for the maintenance of the neuron. Exp Neurol 79(1):283–286

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Arredondo F, Espejo F, Williams V (1982) Regulation of axonal microtubules: effect of sympathetic hyperactivity elicited by reserpine. Neuroscience 7(10):2551–2559

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Moreno RD, Llanos O, Inestrosa NC, Brandan E, Colby T, Esch FS (1992) Axonal sprouting induced in the sciatic nerve by the amyloid precursor protein (APP) and other antiproteases. Neurosci Lett 144(1–2):130–134

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Moreno RD, Inestrosa NC (1995) Mitosis of Schwann cells and demyelination are induced by the amyloid precursor protein and other protease inhibitors in the rat sciatic nerve. Eur J Neurosci 7(1):152–159

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Giuditta A, Koenig E (2000) Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog Neurobiol 62:1–62

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    Article  CAS  PubMed  Google Scholar 

  • Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Brański P, Ratajczak MZ, Zembala M (2006) Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 55:808–818

    Article  CAS  PubMed  Google Scholar 

  • Barrientos SA, Martinez NW, Yoo S, Jara JS, Zamorano S, Hetz C, Twiss JL, Alvarez J, Court FA (2011) Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 31:359–370

    Article  Google Scholar 

  • Benavides E, Alvarez J (1998) Peripheral axons of Wlds mice, which regenerate after a delay of several weeks, do so readily when transcription is inhibited in the distal stump. Neurosci Lett 258(2):77–80

    Article  CAS  PubMed  Google Scholar 

  • Bisby MA, Keen P (1985) The effect of a conditioning lesion on the regeneration rate of peripheral nerve axons containing substance P. Brain Res 336(2):201–206

    Article  CAS  PubMed  Google Scholar 

  • Bittner GD, Mann DW (1976) Differential survival of isolated portions of crayfish axons. Cell Tissue Res 169(3):301–311

    Article  CAS  PubMed  Google Scholar 

  • Blesch A, Tuszynski MH (2009) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Bustos J, Vial JD, Faundez V, Alvarez J (1991) Axons sprout and microtubules increase after local inhibition of RNA synthesis, and microtubules decrease after inhibition of protein synthesis: a morphometric study of rat sural nerves. Eur J Neurosci 3(11):1123–1133

    Article  PubMed  Google Scholar 

  • Cajal SR (1928) Degeneration and regeneration of the nervous system. Oxford University Press

    Google Scholar 

  • Chattopadhyay S, Shubayev V (2009) MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia 57(12):1316–1325

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z-L, Yu W-M, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  PubMed  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51

    Article  CAS  PubMed  Google Scholar 

  • Court F, Alvarez J (2000) Nerve regeneration in Wld(s) mice is normalized by actinomycin D. Brain Res 867:1–8

    Article  CAS  PubMed  Google Scholar 

  • Court FA, Alvarez J (2005) Local regulation of the axonal phenotype, a case of merotrophism. Biol Res 38:365–374

    Article  PubMed  Google Scholar 

  • Court FA, Alvarez J (2011) Slow axoplasmic transport under scrutiny. Biol Res 44:283–293

    Article  Google Scholar 

  • Court FA, Coleman MP (2012) Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci 35:364–372

    Article  CAS  PubMed  Google Scholar 

  • Court FA, Hendriks WTJ, Macgillavry HD, Alvarez J, van Minnen J (2008) Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 28:11024–11029

    Article  CAS  PubMed  Google Scholar 

  • Court FA, Midha R, Cisterna BA, Grochmal J, Shakhbazau A, Hendriks WT, van Minnen J (2011) Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia 59:1529–1539

    Article  PubMed  Google Scholar 

  • Edström A (1966) Amino acid incorporation in isolated Mauthner nerve fibre of goldfish. J Neurochem 13:315–321

    Article  Google Scholar 

  • Ellerton EL, Thompson WJ, Rimer M (2008) Induction of zinc-finger proliferation 1 expression in non-myelinating Schwann cells after denervation. Neuroscience 153(4):975–985. doi:10.1016/j.neuroscience.2008.02.078

    Article  CAS  PubMed  Google Scholar 

  • Espejo F, Alvarez J (1986) Microtubules and calibers in normal and regenerating axons of the sural nerve of the rat. J Comp Neurol 250(1):65–72. doi:10.1002/cne.902500106

    Article  CAS  PubMed  Google Scholar 

  • Fabrizi C, Kelly BM, Gillespie CS, Schlaepfer WW, Scherer SS, Brophy PJ (1997) Transient expression of the neurofilament proteins NF-L and NF-M by Schwann cells is regulated by axonal contact. J Neurosci Res 50(2):291–299

    Article  CAS  PubMed  Google Scholar 

  • Fadic R, Alvarez J (1986) Calibers and microtubules of sympathetic axons are not subject to trophic control by the preganglionic nerve. Exp Neurol 94(1):237–240

    Article  CAS  PubMed  Google Scholar 

  • Fadic R, Vergara J, Alvarez J (1985) Microtubules and caliber of central and peripheral processes of sensory axons. J Comp Neurol 236(2):258–264. doi:10.1002/cne.902360209

    Article  CAS  PubMed  Google Scholar 

  • Faundez V, Cordero ME, Rosso P, Alvarez J (1990) Calibers and microtubules of nerve fibers: differential effect of undernutrition in developing and adult rats. Brain Res 509(2):198–204

    Article  CAS  PubMed  Google Scholar 

  • Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    Article  CAS  PubMed  Google Scholar 

  • Friede RL, Samorajski T (1970) Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 167(4):379–387. doi:10.1002/ar.1091670402

    Article  CAS  PubMed  Google Scholar 

  • Glenn TD, Talbot WS (2013) Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 23:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339

    Article  CAS  PubMed  Google Scholar 

  • Hayworth CR, Moody SE, Chodosh LA, Krieg P, Rimer M, Thompson WJ (2006) Induction of neuregulin signaling in mouse schwann cells in vivo mimics responses to denervation. J Neurosci 26(25):6873–6884. doi:10.1523/JNEUROSCI.1086-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Hernandez C, Blackburn E, Alvarez J (1989) Calibre and microtubule content of the non-medullated and myelinated domains of optic nerve axons of rats. Eur J Neurosci 1(6):654–658

    Article  PubMed  Google Scholar 

  • Hoy RR, Bittner GD, Kennedy D (1967) Regeneration in crustacean motoneurons: evidence for axonal fusion. Science 156(3772):251–252

    Article  CAS  PubMed  Google Scholar 

  • Iñiguez A, Alvarez J (1999) Isolated axons of Wlds mice regrow centralward. Neurosci Lett 268:57–114

    Article  Google Scholar 

  • Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56(14):1552–1565

    Article  PubMed  Google Scholar 

  • Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13:308–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ (2014) Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci 34(18):6323–6333. doi:10.1523/JNEUROSCI.4673-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig E (1984) Local synthesis of axonal protein. In: Lajtha A (ed) Handbook of neurochemistry, vol 7. Plenum, New York, pp 315–340

    Google Scholar 

  • Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H, Nave KA, Schild H, Trotter J (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1(11):1446–1461. doi:10.1002/prca.200700522

    Article  PubMed  Google Scholar 

  • Krasne FB, Lee SH (1977) Regenerating afferents establish synapses with a target neuron that lacks its cell body. Science 198(4316):517–519

    Article  CAS  PubMed  Google Scholar 

  • Kun A, Otero L, Sotelo-Silveira JR, Sotelo JR (2007) Ribosomal distributions in axons of mammalian myelinated fibers. J Neurosci Res 85(10):2087–2098. doi:10.1002/jnr.21340

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Thompson WJ (2011) Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber. J Neurosci 31(37):13191–13203. doi:10.1523/JNEUROSCI.2953-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AC, Holt CE (2008) Function and regulation of local axonal translation. Curr Opin Neurobiol 18:60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Kim Y, Chattopadhyay S, Shubayev I, Dolkas J, Shubayev VI (2010) Matrix metalloproteinase inhibition enhances the rate of nerve regeneration in vivo by promoting dedifferentiation and mitosis of supporting schwann cells. J Neuropathol Exp Neurol 69(4):386–395. doi:10.1097/NEN.0b013e3181d68d12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JM, Alvarez J (1990) The microtubular pattern changes at the spinal cord-root junction and reverts at the root-peripheral nerve junction in sensory and motor fibres of the rat. Eur J Neurosci 2(10):873–878

    Article  PubMed  Google Scholar 

  • Lopez-Verrilli MA, Court FA (2012) Transfer of vesicles from schwann cells to axons: a novel mechanism of communication in the peripheral nervous system. Front Physiol 3:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Verrilli MA, Court FA (2013) Exosomes: mediators of communication in eukaryotes. Biol Res 46:5–11

    Article  PubMed  Google Scholar 

  • Lopez-Verrilli MA, Picou F, Court FA (2013) Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61:1795–1806

    Article  PubMed  Google Scholar 

  • Mason A, Muller KJ (1982) Axon segments sprout at both ends: tracking growth with fluorescent D-peptides. Nature 296(5858):655–657

    Article  CAS  PubMed  Google Scholar 

  • Masuda-Nakagawa LM, Muller KJ, Nicholls JG (1993) Axonal sprouting and laminin appearance after destruction of glial sheaths. Proc Natl Acad Sci USA 90(11):4966–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuarrie IG, Jacob JM (1991) Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush. J Comp Neurol 305(1):139–147. doi:10.1002/cne.903050113

    Article  CAS  PubMed  Google Scholar 

  • Moreno RD, Inestrosa NC, Culwell AR, Alvarez J (1996) Sprouting and abnormal contacts of nonmedullated axons, and deposition of extracellular material induced by the amyloid precursor protein (APP) and other protease inhibitors. Brain Res 718:13–24

    Article  CAS  PubMed  Google Scholar 

  • Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1(1):69–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pannese E, Ledda M, Arcidiacono G, Rigamonti L, Procacci P (1984a) A comparison of the density of microtubules in the central and peripheral axonal branches of the pseudounipolar neurons of lizard spinal ganglia. Anat Rec 208(4):595–605. doi:10.1002/ar.1092080415

    Article  CAS  PubMed  Google Scholar 

  • Pannese E, Procacci P, Ledda M, Arcidiacono G, Rigamonti L (1984b) A quantitative study of microtubules in motor and sensory axons. Acta Anat 118(4):193–200

    Article  CAS  PubMed  Google Scholar 

  • Pannese E, Ledda M, Matsuda S (1988) Nerve fibres with myelinated and unmyelinated portions in dorsal spinal roots. J Neurocytol 17(5):693–700

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay S, Webster HdF (1991) Fine structure of the nervous system: neurons and their supporting cells. Oxford Press, New York

    Google Scholar 

  • Rigaud M, Gemes G, Barabas M-E, Chernoff DI, Abram SE, Stucky CL, Hogan QH (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136:188–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberson MD, Toews AD, Goodrum JF, Morell P (1992) Neurofilament and tubulin mRNA expression in Schwann cells. J Neurosci Res 33(1):156–162

    Article  CAS  PubMed  Google Scholar 

  • Russo F, Di Bella S, Nigita G, Macca V, Laganà A, Giugno R, Pulvirenti A, Ferro A (2012) miRandola: extracellular circulating microRNAs database. PLoS ONE 7:e47786. doi:10.1371/journal.pone.0047786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitua F, Alvarez J (1989) Microtubular packing varies along the course of motor and sensory axons: possible regulation of microtubules by environmental cues. Neurosci Lett 104(3):249–252

    Article  CAS  PubMed  Google Scholar 

  • Schmitte R, Tipold A, Stein VM, Schenk H, Flieshardt C, Grothe C, Haastert K (2010) Genetically modified canine Schwann cells–In vitro and in vivo evaluation of their suitability for peripheral nerve tissue engineering. J Neurosci Methods 186(2):202–208. doi:10.1016/j.jneumeth.2009.11.023

    Article  CAS  PubMed  Google Scholar 

  • Serra M, Alvarez J (1989) On the asymmetry of the primary branching of vagal sensory axons: possible role of the supporting tissue. J Comp Neurol 284(1):108–118. doi:10.1002/cne.902840108

    Article  CAS  PubMed  Google Scholar 

  • Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RS (1973) Microtubule and neurofilament densities in amphibian spinal root nerve fibers: relationship to axoplasmic transport. Can J Physiol Pharmacol 51(11):798–806

    Article  CAS  PubMed  Google Scholar 

  • Tapia M, Inestrosa NC, Alvarez J (1995) Early axonal regeneration: repression by Schwann cells and a protease? Exp Neurol 131(1):124–132

    Article  CAS  PubMed  Google Scholar 

  • Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    PubMed  Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  PubMed  Google Scholar 

  • Twiss J, Fainzilber M (2009) Ribosomes in axons - scrounging from the neighbors? Trends Cell Biol 19:236–243

    Article  CAS  PubMed  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela V, Collyer E, Armentano D, Parsons GB, Court FA, Hetz C (2012) Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis 3:e272. doi:10.1038/cddis.2012.8

    Article  CAS  PubMed  Google Scholar 

  • Vergara J, Serra M, Saitua F, Iturriaga R, Alvarez J (1991) Axonal microtubules: comparative anatomy in vertebrates, including man. J Submicrosc Cytol Pathol 23(3):357–363

    CAS  PubMed  Google Scholar 

  • Villegas R, Martinez NW, Lillo J, Pihan P, Hernandez D, Twiss JL, Court FA (2014) Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J Neurosci 34(21):7179–7189. doi:10.1523/JNEUROSCI.4784-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Sun T (2010) Neural plasticity and functional recovery of human central nervous system with special reference to spinal cord injury. Spinal Cord 49:486–492

    Article  CAS  PubMed  Google Scholar 

  • Windebank AJ, Wood P, Bunge RP, Dyck PJ (1985) Myelination determines the caliber of dorsal root ganglion neurons in culture. J Neurosci 5(6):1563–1569

    CAS  PubMed  Google Scholar 

  • Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota R (1984) Occurrence of long non-myelinated axonal segments intercalated in myelinated, presumably sensory axons: electron microscopic observations in the dog atrial endocardium. J Neurocytol 13(1):127–143

    Article  CAS  PubMed  Google Scholar 

  • Yoo S, van Niekerk EA, Merianda TT, Twiss JL (2010) Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 223(1):19–27. doi:10.1016/j.expneurol.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  • Zelena J, Lubinska L, Gutmann E (1968) Accumulation of organelles at the ends of interrupted axons. Z Mikrosk Anat Forsch 91(2):200–219

    Article  CAS  Google Scholar 

  • Zhang J, Zhao F, Wu G, Li Y, Jin X (2010) Functional and histological improvement of the injured spinal cord following transplantation of Schwann cells transfected with NRG1 gene. Anat Rec 293(11):1933–1946. doi:10.1002/ar.21223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. Court .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Court, F.A., Alvarez, J. (2016). Schwann Cell and Axon: An Interlaced Unit—From Action Potential to Phenotype Expression. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_9

Download citation

Publish with us

Policies and ethics