Skip to main content

Physiological Functions of Glial Cell Hemichannels

  • Chapter
  • First Online:
Glial Cells in Health and Disease of the CNS

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 949))

Abstract

The brain performs exceptionally complex and dynamic tasks that depend on the coordinated interaction of neurons, glial cells, endothelial cells, pericytes, smooth muscle cells, ependymal cells, and circulating blood cells. Among these cells, glial cells have emerged as crucial protagonists in the regulation of synaptic transmission and neural function. Indeed, these cells express a wide range of receptors that enable them to sense changes in neuronal activity and the microenvironment by responding locally via the release of bioactive molecules known as gliotransmitters. In the central nervous system (CNS), a novel mechanism that allows gliotransmission via the opening of hemichannels has been proposed. These channels are composed of six protein subunits consisting of connexins or pannexins, which are two highly conserved protein families that are encoded by 21 and 3 genes, respectively, in humans. Typically, glial cell hemichannels exhibit low levels of activity, but this activity is sufficient to ensure the release of a broad spectrum of gliotransmitters, including ATP, D-serine, glutamate, adenosine, and glutathione. Here, we briefly review the current findings regarding the effects of the hemichannel-dependent release of gliotransmitters on the physiology of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Arc:

Arcuate

ATP:

Adenosine triphosphate

BLA:

Basolateral amygdala

[Ca2+]i :

Intracellular free Ca2+ concentration

CSF:

Cerebrospinal fluid

CNS:

Central nervous system

Cx26:

Connexin26

Cx36:

Connexin36

Cx43:

Connexin43

GFAP:

Glial fibrillary acidic protein

GJCs:

Gap junction channels

kDa:

Kilodalton

KO:

Knockout

NAD+ :

Nicotinamide adenine dinucleotide

NMDA:

N-methyl-D-aspartate

MAP2:

Microtubule-associated protein 2

MBH:

Mediobasal hypothalamus

MI:

Metabolic inhibition

Panx1:

Pannexin1

Panx2:

Pannexin2

PGE2 :

Prostaglandin E2

RTN:

Retrotrapezoid nucleus

siRNA:

Small interfering ribonucleic acid

VMH:

Ventromedial hypothalamic nuclei

VMS:

Ventral medullary surface

TDCS:

Transcranial direct current stimulation

References

  • Abascal F, Zardoya R (2013) Evolutionary analyses of gap junction protein families. Biochem Biophys Acta 1828:4–14

    Article  CAS  PubMed  Google Scholar 

  • Allard C, Carneiro L, Grall S, Cline BH, Fioramonti X, Chrétien C, Baba-Aissa F, Giaume C, Pénicaud L, Leloup C (2014) Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion. J Cereb Blood Flow Metab 34(2):339–346

    Article  CAS  PubMed  Google Scholar 

  • Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, Wang J, Dahl G, Steinem C, Sosinsky GE (2010) Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J Biol Chem 285:24420–24431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511

    Article  CAS  PubMed  Google Scholar 

  • Bargiotas P, Krenz A, Hormuzdi SG, Ridder DA, Herb A, Barakat W, Penuela S, von Engelhardt J, Monyer H, Schwaninger M (2011) Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci USA 108:20772–20777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargiotas P, Krenz A, Monyer H, Schwaninger M (2012) Functional outcome of pannexin-deficient mice after cerebral ischemia. Channels (Austin) 6:453–456

    Article  CAS  Google Scholar 

  • Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Kielian T (2014) Hemichannels in neurodegenerative diseases: is there a link to pathology? Front Cell Neurosci 8:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100(23):13644–13649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruzzone S, Guida L, Zocchi E, Franco L, DE Flora A (2001) Connexin 43 hemi channels mediate Ca2+ regulated transmembrane NAD+ fluxes in intact cells. FASEB J 15(1):10–12

    CAS  PubMed  Google Scholar 

  • Cotrina ML, Lin JH, Nedergaard M (2008) Adhesive properties of connexin hemichannels. Glia 56:1791–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chever O, Lee CY, Rouach N (2014) Astroglial connexin43 hemichannels tune basal excitatory synaptic transmission. J Neurosci 34:11228–11232

    Article  PubMed  Google Scholar 

  • Davidson JO, Green CR, Bennet L, Nicholson LF, Danesh-Meyer H, O’Carroll SJ, Gunn AJ (2013) A key role for connexin hemichannels in spreading ischemic brain injury. Curr Drug Targets 14:36–46

    Article  CAS  PubMed  Google Scholar 

  • De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 31:1942–1957

    Article  PubMed  PubMed Central  Google Scholar 

  • De Bock M, Wang N, Bol M, Decrock E, Ponsaerts R, Bultynck G, Dupont G, Leybaert L (2012) Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+ dependent Ca2+ entry pathway. J Biol Chem 287:12250–12266

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vuyst E, Boengler K, Antoons G, Sipido KR, Schulz R, Leybaert L (2011) Pharmacological modulation of connexin-formed channels in cardiac pathophysiology. Br J Pharmacol 163:469–483

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25:34–44

    Article  PubMed  Google Scholar 

  • De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R (2009) Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187

    Article  PubMed  Google Scholar 

  • Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    CAS  PubMed  Google Scholar 

  • Fasciani I, Temperan A, Perez-Atencio LF, Escudero A, Martinez-Montero P, Molano J, Gomez-Hernandez JM, Paino CL, Gonzalez-Nieto D, Barrio LC (2013) Regulation of connexin hemichannel activity by membrane potential and the extracellular calcium in health and disease. Neuropharmacology 75:479–490

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562

    CAS  PubMed  Google Scholar 

  • Fiori MC, Figueroa V, Zoghbi ME, Saez JC, Reuss L, Altenberg GA (2012) Permeation of calcium through purified connexin 26 hemichannels. J Biol Chem 287:40826–40834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589(Pt 9):2275–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk GD (2010) The ‘connexin’ between astrocytes, ATP and central respiratory chemoreception. J Physiol 588:4335–4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  CAS  PubMed  Google Scholar 

  • Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    Article  PubMed  Google Scholar 

  • Huckstepp RTR, Eason R, Sachdev A, Dale N (2010a) CO2-dependent opening of connexin 26 and related β connexins. J Physiol 588(Pt 20):3921–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckstepp RTR, Id Bihi R, Eason R, Spyer KM, Dicke N, Willecke K, Marina N, Gourine AV, Dale N (2010b) Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol 588(20):3901–3920

    Google Scholar 

  • Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29:7092–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y, Koizumi S (2013) Microglia release ATP by exocytosis. Glia 61(8):1320–1330

    Article  PubMed  Google Scholar 

  • Inoue K, Koizumi S, Tsuda M (2007) The role of nucleotides in the neuron–glia communication responsible for the brain functions. J Neurochem 102:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Uramoto H, Okada T, Sabirov RZ, Okada Y (2012) Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells. Am J Physiol Cell Physiol 303:C924–C935

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Yuan H, Duan L, Cao R, Gao B, Xiong Y-F, Rao Z-R (2011) Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res 1392:8–15

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Tachikawa M, Akaogi R, Fujimoto K, Ishibashi M, Uchida Y, Couraud PO, Ohtsuki S, Hosoya K, Terasaki T (2015) Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells. J Pharmacol Exp Ther 353:192–200

    Article  CAS  PubMed  Google Scholar 

  • Kawamura M Jr, Ruskin DN, Masino SA (2010) Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci 30:3886–38895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JE, Kang TC (2011) The P2X7 receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice. J Clin Invest 121:2037–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591

    CAS  PubMed  Google Scholar 

  • Klaassen LJ, Sun Z, Steijaert MN, Bolte P, Fahrenfort I, Sjoerdsma T, Klooster J, Claassen Y, Shields CR, Ten Eikelder HM, Janssen-Bienhold U, Zoidl G, McMahon DG, Kamermans M (2011) Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLoS Biol 9:e1001107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtenbach S, Whyte-Fagundes P, Gelis L, Brazil E, Zoidl C, Hatt H, Shestopalov VI, Zoidl G (2014) Investigation of olfactory function in a Panx1 knock out mouse model. Front Cell Neurosci 8:266

    PubMed  PubMed Central  Google Scholar 

  • Langlet F (2014) Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol 26:753–760

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010) Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci 30:4197–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Sun L, Torii M, Rakic P (2012) Connexin 43 controls the multipolar phase of neuronal migration to the cerebral cortex. Proc Natl Acad Sci USA 109:8280–8285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawhinney LJ, de Rivero Vaccari JP, Dale GA, Keane RW, Bramlett HM (2011) Heightened inflammasome activation is linked to age-related cognitive impairment in Fischer 344 rats. BMC Neurosci 12:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougal DH, Hermann GE, Rogers RC (2013) Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis. Front Neurosci 7:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N (2013) CO2 directly modulates connexin 26 by formation of carbamate bridges between subunits. Elife 2:e01213

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore AR, Zhou WL, Sirois CL, Belinsky GS, Zecevic N, Antic SD (2014) Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex. Proc Natl Acad Sci USA 111:E3919–E3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  CAS  PubMed  Google Scholar 

  • Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Saez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118:826–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F, Sáez JC, García MA (2012a) Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 60:53–68

    Article  PubMed  Google Scholar 

  • Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Saez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana JA, von Bernhardi R, Giaume C, Saez JC (2012b) Glial hemichannels and their involvement in aging and neurodegenerative diseases. Rev Neurosci 23:163–177

    Article  CAS  PubMed  Google Scholar 

  • Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115(4):1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  CAS  PubMed  Google Scholar 

  • Ponsaerts R, De Vuyst E, Retamal M, D’Hondt C, Vermeire D, Wang N, De Smedt H, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J 24:4378–4395

    Article  CAS  PubMed  Google Scholar 

  • Prochnow N, Abdulazim A, Kurtenbach S, Wildforster V, Dvoriantchikova G, Hanske J, Petrasch-Parwez E, Shestopalov VI, Dermietzel R, Manahan-Vaughan D, Zoidl G (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS ONE 7:e51767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  CAS  PubMed  Google Scholar 

  • Rudkouskaya A, Chernoguz A, Haskew-Layton RE, Mongin AA (2008) Two conventional protein kinase C isoforms, alpha and beta I, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytes. J Neurochem 105:2260–2270

    Article  CAS  PubMed  Google Scholar 

  • Saez JC, Leybaert L (2014) Hunting for connexin hemichannels. FEBS Lett 588:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    Article  CAS  PubMed  Google Scholar 

  • Saez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV (2010) Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316:2377–2389

    Article  CAS  PubMed  Google Scholar 

  • Sahu G, Sukumaran S, Bera AK (2014) Pannexins form gap junctions with electrophysiological and pharmacological properties distinct from connexins. Sci Rep 4:4955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salameh A, Blanke K, Dhein S (2013) Mind the gap! Connexins and pannexins in physiology, pharmacology and disease. Front Pharmacol 4:144

    PubMed  PubMed Central  Google Scholar 

  • Sanchez HA, Orellana JA, Verselis VK, Saez JC (2009) Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 297:C665–C678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago MF, Veliskova J, Patel NK, Lutz SE, Caille D, Charollais A, Meda P, Scemes E (2011) Targeting pannexin1 improves seizure outcome. PLoS ONE 6:e25178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: Microglia-synapse interactions in the developing and mature CNS. Glia 61:24–36

    Article  PubMed  Google Scholar 

  • Schalper KA, Orellana JA, Berthoud VM, Saez JC (2009) Dysfunctions of the diffusional membrane pathways mediated by hemichannels in inherited and acquired human diseases. Curr Vasc Pharmacol 7:486–505

    Article  CAS  PubMed  Google Scholar 

  • Schalper KA, Sanchez HA, Lee SC, Altenberg GA, Nathanson MH, Saez JC (2010) Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 299:C1504–C1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schock SC, Leblanc D, Hakim AM, Thompson CS (2008) ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368:138–144

    Article  CAS  PubMed  Google Scholar 

  • Shestopalov VI, Slepak VZ (2014) Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    CAS  PubMed  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    Article  CAS  Google Scholar 

  • Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverria C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Sáez JC, Retamal MA (2012) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 26:3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Stout CE, Costantin JL, Naus CCG, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482–10488

    Article  CAS  PubMed  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR, Nedergaard M (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci USA 102:16466–16471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368

    Article  CAS  PubMed  Google Scholar 

  • Tonon MC, Lanfray D, Castel H, Vaudry H, Morin F (2013) Hypothalamic glucose-sensing: role of Glia-to-neuron signaling. Horm Metab Res 45:955–959

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Toescu EC (2006) Neuronal-glial networks as substrate for CNS integration. J Cell Mol Med 10:826–836

    Article  CAS  PubMed  Google Scholar 

  • Vessey DA, Li L, Kelley M (2010) Pannexin-I/P2X 7 purinergic receptor channels mediate the release of cardioprotectants induced by ischemic pre- and postconditioning. J Cardiovasc Pharmacol Ther 15:190–195

    Article  CAS  PubMed  Google Scholar 

  • Vessey DA, Li L, Kelley M (2011) Ischemic preconditioning requires opening of pannexin-1/P2X(7) channels not only during preconditioning but again after index ischemia at full reperfusion. Mol Cell Biochem 351:77–84

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217

    Article  CAS  PubMed  Google Scholar 

  • Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, Leybaert L (2013) Paracrine signaling through plasma membrane hemichannels. Biochim Biophys Acta 1828:35–50

    Article  CAS  PubMed  Google Scholar 

  • Wenker IC, Sobrinho CR, Takakura AC, Moreira TS, Mulkey DK (2012) Regulation of ventral surface CO2/H + -sensitive neurons by purinergic signalling. J Physiol 590(Pt 9):2137–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JA, Imamura M, Fregni F (2009) Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. J Rehabil Med 41:305–311

    Article  PubMed  Google Scholar 

  • Ye Z-C, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23(9):3588–3596

    CAS  PubMed  Google Scholar 

  • Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci USA 101:9441–9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant 11121133 (to JAO), 1160710 (to JAO), the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) and Programa de Investigación Asociativa (PIA) Grant Anillo de Ciencia y Tecnología ACT1411 (to JAO). We apologize to the authors and groups whose work we did not cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Orellana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Orellana, J.A. (2016). Physiological Functions of Glial Cell Hemichannels. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_5

Download citation

Publish with us

Policies and ethics