Skip to main content

A Scalable Cluster-Rendering Architecture for Immersive Virtual Environments

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9768))

Abstract

Complex virtual environments often require computational resources exceeding the capabilities of a single machine. Furthermore immersive visualization can exploit multiple displays fostering the needing of computational power. We hereby present a system, called XVR Network Renderer, allowing rendering load to be distributed throughout a cluster of workstations operating concurrently. The proposed solution consists in a set of software modules structured as a single-master multiple-slaves architecture. The master software intercepts all the graphical commands performed by an OpenGL application, without any modification of the source code. The commands are then streamed and executed individually by each slave client. The Network Renderer can be seen as a virtual OpenGL context with high capabilities. The system can be configured to work with a wide range of complex visualization setups, like CAVEs, automatically handling stereoscopy, performing perspective corrections and managing projection-related common problems. Any number of displays can be simultaneously managed by the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. University of Minnesota: PowerWall. http://www.lcse.umn.edu/research/powerwall/powerwall.html. Accessed 21 Feb 2016

  2. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The cave: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–73 (1992)

    Article  Google Scholar 

  3. Crockett, T.W.: An introduction to parallel rendering. Parallel Comput. 23(7), 819–843 (1997)

    Article  MATH  Google Scholar 

  4. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel rendering. IEEE Comput. Graph. Appl. 14(4), 23–32 (1994)

    Article  Google Scholar 

  5. Molnar, S., Eyles, J., Poulton, J.: Pixelflow: high-speed rendering using image composition. ACM SIGGRAPH Comput. Graph. 26, 231–240 (1992). ACM

    Article  Google Scholar 

  6. Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., Hanrahan, P.: Wiregl: a scalable graphics system for clusters. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 129–140. ACM (2001)

    Google Scholar 

  7. Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D., Klosowski, J.T.: Chromium: a stream-processing framework for interactive rendering on clusters. ACM Trans. Graph. (TOG) 21(3), 693–702 (2002)

    Article  Google Scholar 

  8. Corrêa, W.T., Klosowski, J.T., Silva, C.T.: Out-of-core sort-first parallel rendering for cluster-based tiled displays. Parallel Comput. 29(3), 325–338 (2003)

    Article  Google Scholar 

  9. Stoll, G., Eldridge, M., Patterson, D., Webb, A., Berman, S., Levy, R., Caywood, C., Taveira, M., Hunt, S., Hanrahan, P.: Lightning-2: a high-performance display subsystem for pc clusters. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 141–148. ACM (2001)

    Google Scholar 

  10. Marino, G., Vercelli, D., Tecchia, F., Gasparello, P.S.: Description and performance analysis of a distributed rendering architecture for virtual environments. In: 17th International Conference on Artificial Reality and Telexistence, pp. 234–241. IEEE (2007)

    Google Scholar 

  11. Tecchia, F.: A flexible framework for wide-spectrum vr development. Presence 19(4), 302–312 (2010)

    Article  Google Scholar 

  12. Mortensen, J., Yu, I., Khanna, P., Tecchia, F., Spanlang, B., Marino, G., Slater, M.: Real-time global illumination for vr applications. IEEE Comput. Graph. Appl. 6, 56–64 (2008)

    Article  Google Scholar 

  13. Steed, A., Tecchia, F., Bergamasco, M., Slater, M., Steptoe, W., Oyekoya, W., Pece, F., Weyrich, T., Kautz, J., Friedman, D., et al.: Beaming: an asymmetric telepresence system. IEEE Comput. Graph. Appl. 6, 10–17 (2012)

    Article  Google Scholar 

  14. Pérez Marcos, D., Solazzi, M., Steptoe, W., Oyekoya, O., Frisoli, A., Weyrich, T., Steed, A., Tecchia, F., Slater, M., Sánchez-Vives, M.V.: A fully immersive set-up for remote interaction and neuro rehabilitation based on virtual body ownership. Front. Neurol. 3, 110 (2012)

    Article  Google Scholar 

  15. Normand, J.M., Spanlang, B., Tecchia, F., Carrozzino, M., Swapp, D., Slater, M.: Full body acting rehearsal in a networked virtual environment – a case study. Presence: Teleoperators Virtual Environ. 21(2), 229–243 (2012)

    Article  Google Scholar 

  16. Shreiner, D., Group, B.T.K.O.A.W., et al.: OpenGL Programming Guide: The Official Guide to Learning OpenGL Versions 3.0 and 3.1. Pearson Education, New Jersey (2009)

    Google Scholar 

  17. Marino, G., Gasparello, P.S., Vercelli, D., Tecchia, F., Bergamasco, M.: Network streaming of dynamic 3D content with on-line compression of frame data. In: 2010 IEEE Virtual Reality Conference (VR), pp. 285–286. IEEE (2010)

    Google Scholar 

  18. Hunt, J.W., MacIlroy, M.: An algorithm for differential file comparison. Computing science technical report. Bell Laboratories, New Jersey (1976). https://books.google.it/books?id=zJ2LMwAACAAJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Avveduto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Avveduto, G., Tecchia, F., Carrozzino, M., Bergamasco, M. (2016). A Scalable Cluster-Rendering Architecture for Immersive Virtual Environments. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9768. Springer, Cham. https://doi.org/10.1007/978-3-319-40621-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40621-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40620-6

  • Online ISBN: 978-3-319-40621-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics