Skip to main content

Stem Cells for Articular Cartilage Repair and Regeneration

  • Chapter
  • First Online:
Bone and Cartilage Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 937 Accesses

Abstract

Articular cartilage is a unique avascular load-bearing tissue comprising of dense extracellular matrix sparsely populated by chondrocytes. Due to the lack of vascularisation and low cell density, articular cartilage has a limited self-regenerative capacity. Many treatment modalities have been generated but with limited success due to formation of inferior fibrocartilage at the damaged area/injured site during the repair process. Recent advancements in stem cell biology and tissue engineering have provided notable strategies for stem cell-based therapies and cartilage tissue engineering. Several stem cell sources including adult and embryonic stem cells have been reported for their differentiation capabilities to form the cartilage. Among these various stem cell sources, mesenchymal stem cells (MSCs) represent the most promising stem cell source for cartilage regeneration, due to its availability, ease of isolation and high potency to differentiate into chondrocytes. Stem cells may be delivered directly by means of injection or seeded in scaffolds for implantation. To further enhance cartilage regeneration, advances in tissue engineering have enabled the use of scaffolds, coupled with biochemical and biophysical factors to influence stem cell chondrogenesis in their lineage-specific differentiation and phenotypic stability of the cartilage formation. Moving forward, a number of clinical trials using bone marrow-derived MSCs for articular cartilage repair have been carried out and showed successful cartilage regeneration, with features of hyaline cartilage, similar to those of the native cartilage. The translational use of stem cells, in particular MSCs, for articular cartilage repair is likely to advance rapidly in the ensuing decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

Three-dimensional

ACI:

Autologous chondrocyte implantation

ACI:

Autologous chondrocyte implantation

BMMSC:

Bone marrow-derived mesenchymal stem cells

ECM:

Extracellular matrix

ESCs:

Embryonic stem cells

GAGs:

Glycosaminoglycans

ICRS:

International Cartilage Research Society

IL:

Interleukin

iPSCs:

Induced pluripotent stem cells

MMPs:

Matrix metalloproteinases

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

OA:

Osteoarthritis

PCM:

Pericellular matrix

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PLGA:

Poly(lactic/glycolic acid)

PRP:

Platelet-rich plasma

SZP:

Superficial zone protein

TGF-β1:

Transforming growth factor-β1

TNF-α:

Tumour necrosis factor-α

References

  • Adesida AB, Mulet-Sierra A, Jomha NM. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem cell Res Ther. 2012;3(2):1–13.

    Article  CAS  Google Scholar 

  • Afizah H, et al. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 2007;13(4):659–66.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N, et al. Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem. 2007;20(5):665–78.

    Article  CAS  PubMed  Google Scholar 

  • Ahn H, et al. 3D braid scaffolds for regeneration of articular cartilage. J Mech Behav Biomed Mater. 2014;34:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulos LG, et al. Developmental and osteoarthritic changes in Col6a1‐knockout mice: Biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis & Rheumatism. 2009;60(3):771–9.

    Article  CAS  Google Scholar 

  • Ando W, et al. Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage. Cytotherapy. 2014;16(6):776–88.

    Article  CAS  PubMed  Google Scholar 

  • Archer CW, Francis-West P. The chondrocyte. Int J Biochem Cell Biol. 2003;35(4):401–4.

    Article  CAS  PubMed  Google Scholar 

  • Arokoski JP, et al. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports. 2000;10(4):186–98.

    Article  CAS  PubMed  Google Scholar 

  • Bakay A, et al. Osteochondral resurfacing of the knee joint with allograft. Int Orthop. 1998;22(5):277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra J, et al. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010;16(6):617–27.

    Article  CAS  PubMed  Google Scholar 

  • Bell R, et al. Fresh osteochondral allografts for advanced giant cell tumors at the knee. J Arthroplasty. 1994;9(6):603–9.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin M, Archer C, Ralphs J. Cytoskeleton of cartilage cells. Microsc Res Tech. 1994;28(5):372–7.

    Article  CAS  PubMed  Google Scholar 

  • Bian L, et al. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A. 2011;17(7–8):1137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigdeli N, et al. Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells. 2009;27(8):1812–21.

    Article  PubMed  Google Scholar 

  • Billings E, et al. Cartilage resurfacing of the rabbit knee: the use of an allogeneic demineralized bone matrix-autogeneic perichondrium composite implant. Acta Orthop Scand. 1990;61(3):201–6.

    Article  PubMed  Google Scholar 

  • Blunk T, et al. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng. 2002;8(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester P, et al. Histological and biochemical evaluation of perichondrial transplants in human articular cartilage defects. J Orthop Res. 1999;17(6):843–9.

    Article  CAS  PubMed  Google Scholar 

  • Boyette LB, et al. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med. 2014;3(2):241–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010;38(6):1259–71.

    Article  PubMed  Google Scholar 

  • Brittberg M, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  • Brittberg M, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996;326:270–83.

    Article  Google Scholar 

  • Brown PT, et al. Characterization and evaluation of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Cell Tissue Res. 2014;358(1):149–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckwalter JA, Lane NE. Athletics and osteoarthritis. Am J Sports Med. 1997;25(6):873–81.

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter JA, Mankin H. Articular cartilage repair and transplantation. Arthritis Rheum. 1998;41(8):1331–42.

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter JA, Rosenberg L, Hunziker E. Articular cartilage: composition, structure, response to injury, and methods of facilitating repair. In: Ewing J, editor. Articular cartilage and knee joint function: basic science and arthroscopy. New York: Raven Press Ltd.; 1990. p. 19–56.

    Google Scholar 

  • Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.

    PubMed  Google Scholar 

  • Bui KHT, et al. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study. Biomed Res Ther. 2014;1(1):2–8.

    Article  Google Scholar 

  • Caminal M, et al. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology. 2015. doi:10.1007/s10616-015-9842-4.

    PubMed  Google Scholar 

  • Cao B, et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol. 2003;5(7):640–6.

    Article  CAS  PubMed  Google Scholar 

  • Chang CP, et al. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci. 2013;124(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, et al. Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis. 2015;2(1):76–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng A, Hardingham TE, Kimber SJ. Generating cartilage repair from pluripotent stem cells. Tissue Eng Part B Rev. 2013;20(4):257–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenite A, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155–61.

    Article  CAS  PubMed  Google Scholar 

  • Choi JB, et al. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech. 2007;40(12):2596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi JW, et al. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin‐hyaluronic acid hydrogel. Artif Organs. 2013;37(7):648–55.

    Article  CAS  PubMed  Google Scholar 

  • Chow JCY, et al. Arthroscopic autogenous osteochondral transplantation for treating knee cartilage defects: a 2- to 5-year follow-up study. Arthroscopy. 2004;20(7):681–90.

    Article  PubMed  Google Scholar 

  • Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair. Int Orthop. 2007;31(6):773–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects an experimental study in horses. Clin Orthop Relat Res. 1972;82:253–62.

    Article  CAS  PubMed  Google Scholar 

  • Cui L, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30(14):2683–93.

    Article  CAS  PubMed  Google Scholar 

  • Dahlin RL, et al. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials. 2014;35(26):7460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dare EV, et al. Fibrin sealants from fresh or fresh/frozen plasma as scaffolds for in vitro articular cartilage regeneration. Tissue Eng Part A. 2009;15(8):2285–97.

    Article  CAS  PubMed  Google Scholar 

  • De Bari C, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.

    Article  PubMed  Google Scholar 

  • Dell’Accio F, et al. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res. 2003;21(1):123–31.

    Article  PubMed  Google Scholar 

  • Deng T, et al. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. 2014;8(7):546–56.

    CAS  PubMed  Google Scholar 

  • Diao H, et al. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-β1 gene–activated scaffolds. Tissue Eng Part A. 2009;15(9):2687–98.

    Article  CAS  PubMed  Google Scholar 

  • Diduch DR, et al. Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy. 2000;16(6):571–7.

    Article  CAS  PubMed  Google Scholar 

  • Dounchis JS, et al. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res. 2000;377:248–64.

    Article  Google Scholar 

  • Elsaid KA, Jay GD, Chichester CO. Reduced expression and proteolytic susceptibility of lubricin/superficial zone protein may explain early elevation in the coefficient of friction in the joints of rats with antigen-induced arthritis. Arthritis Rheum. 2007;56(1):108–16.

    Article  PubMed  Google Scholar 

  • Emadedin M, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.

    PubMed  Google Scholar 

  • Fan H, et al. Cartilage regeneration using mesenchymal stem cells and a PLGA–gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials. 2006;27(26):4573–80.

    Article  CAS  PubMed  Google Scholar 

  • Fan J, et al. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomater. 2010;6(3):1178–85.

    Article  CAS  PubMed  Google Scholar 

  • Fermor B, et al. Oxygen, nitric oxide and articular cartilage. Eur Cell Mater. 2007;13(11):56–65.

    Article  CAS  PubMed  Google Scholar 

  • Foldager CB, et al. Distribution of basement membrane molecules, laminin and collagen type IV, in normal and degenerated cartilage tissues. Cartilage. 2014;5(2):123–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fortier L, et al. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br Vol. 2002;84(2):276–88.

    Article  CAS  Google Scholar 

  • Freed LE, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  • Fu WL, Zhou CY, Yu JK. A new source of mesenchymal stem cells for articular cartilage repair MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a Rabbit model. Am J Sports Med. 2014;42(3):592–601.

    Article  PubMed  Google Scholar 

  • Ge Z, et al. Osteoarthritis and therapy. Arthritis Rheum. 2006;55(3):493–500.

    Article  PubMed  Google Scholar 

  • Gigante A, et al. Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage repair in the knee: histological results of second-look biopsies at 1 year follow-up. Int J Immunopathol Pharmacol. 2011;24(1 Suppl 2):69–72.

    Google Scholar 

  • Gikas P, et al. An overview of autologous chondrocyte implantation. J Bone Joint Surg Br Vol. 2009;91(8):997–1006.

    Article  CAS  Google Scholar 

  • Girtler D, et al. Arthroscopic autologous osteochondral mosaicplasty for the treatment of subchondral cystic lesion in the medial femoral condyle in a horse. Acta Vet Hung. 2000;48(3):343–54.

    Article  PubMed  Google Scholar 

  • Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–34.

    Article  CAS  PubMed  Google Scholar 

  • Grande DA, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res. 1989;7(2):208–18.

    Article  CAS  PubMed  Google Scholar 

  • Grayson WL, et al. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006;207(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  • Griffin TM, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev. 2005;33(4):195–200.

    Article  PubMed  Google Scholar 

  • Guerne PA, Sublet A, Lotz M. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol. 1994;158(3):476–84.

    Article  CAS  PubMed  Google Scholar 

  • Guidolin D, et al. Morphological analysis of articular cartilage biopsies from a randomized, clinical study comparing the effects of 500–730 kDa sodium hyaluronate (Hyalgan®) and methylprednisolone acetate on primary osteoarthritis of the knee. Osteoarthritis Cartilage. 2001;9(4):371–81.

    Article  CAS  PubMed  Google Scholar 

  • Guilak F. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology. 2000;37(1–2):27–44.

    CAS  PubMed  Google Scholar 

  • Handorf AM, Li WJ. Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS One. 2011;6(7), e22887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handorf AM, Li WJ. Induction of mesenchymal stem cell chondrogenesis through sequential administration of growth factors within specific temporal windows. J Cell Physiol. 2014;229(2):162–71.

    Article  CAS  PubMed  Google Scholar 

  • Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg. 2003;85 Suppl 2:25–32.

    Article  PubMed  Google Scholar 

  • Hangody L, et al. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res. 2001;391:S328–36.

    Article  Google Scholar 

  • Hangody L, Berta Á. Surgical techniques in cartilage repair surgery: osteochondral autograft transfer (OATS, Mosaicplasty) In: Shetty AA, et al. editors. Techniques in cartilage repair surgery. Berlin Heidelberg: Springer; 2014. p. 131–40.

    Google Scholar 

  • Hao T, et al. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis Cartilage. 2010;18(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  • Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells. 2004;22(7):1152–67.

    Article  PubMed  Google Scholar 

  • Hennig T, et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP‐6. J Cell Physiol. 2007;211(3):682–91.

    Article  CAS  PubMed  Google Scholar 

  • Henrotin YE, et al. Effects of exogenous IL-1 beta, TNF alpha, IL-6, IL-8 and LIF on cytokine production by human articular chondrocytes. Osteoarthritis Cartilage. 1996;4(3):163–73.

    Article  CAS  PubMed  Google Scholar 

  • Ho ST, et al. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials. 2010;31(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  • Homminga GN, et al. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br Vol. 1990;72(6):1003–7.

    CAS  Google Scholar 

  • Huang C, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone‐marrow derived mesenchymal stem cells. Stem Cells. 2004;22(3):313–23.

    Article  CAS  PubMed  Google Scholar 

  • Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432–63.

    Article  CAS  PubMed  Google Scholar 

  • Hunziker EB, et al. Age-Independent Cartilage Generation for Synovium-Based Autologous Chondrocyte Implantation. Tissue Eng Part A. 2015;21(13–14):2089–98.

    Article  CAS  PubMed  Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One. 2008;3(6), e2498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Indrawattana N, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320(3):914–9.

    Article  CAS  PubMed  Google Scholar 

  • Ishijima M, et al. Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biol. 2012;31(4):234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakob RP, et al. Autologous osteochondral grafting in the knee: indication, results, and reflections. Clin Orthop Relat Res. 2002;401(401):170–84.

    Article  Google Scholar 

  • Jiang YZ, et al. Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant. 2011;20(5):593–607.

    Article  PubMed  Google Scholar 

  • Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng Part B Rev. 2012;18(4):301–11.

    Article  CAS  PubMed  Google Scholar 

  • Juhász T, et al. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal. 2014;26(3):468–82.

    Article  PubMed  CAS  Google Scholar 

  • Jung Y, Bauer G, Nolta JA. Concise review: Induced pluripotent stem cell‐derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells. 2012;30(1):42–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya T, et al. Effects of mechanical stimuli on the synthesis of superficial zone protein in chondrocytes. J Biomed Mater Res A. 2010;92(2):801–5.

    CAS  PubMed  Google Scholar 

  • Kanawa M, et al. Age-dependent decrease in the chondrogenic potential of human bone marrow mesenchymal stromal cells expanded with fibroblast growth factor-2. Cytotherapy. 2013;15(9):1062–72.

    Article  CAS  PubMed  Google Scholar 

  • Kang SW, et al. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett. 2008;30(3):435–9.

    Article  CAS  PubMed  Google Scholar 

  • Kanichai M, et al. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol. 2008;216(3):708–15.

    Article  CAS  PubMed  Google Scholar 

  • Khan WS, et al. Bone marrow‐derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res. 2010;28(6):834–40.

    CAS  PubMed  Google Scholar 

  • Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, et al. Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold? Am J Sports Med. 2015;43(1):176–85.

    Article  PubMed  Google Scholar 

  • Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19(6):902–7.

    Article  PubMed  Google Scholar 

  • Korhonen RK, et al. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. J Biomech Eng. 2008;130(2):021003.

    Article  PubMed  Google Scholar 

  • Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci. 2010;67(17):2879–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda R, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15(2):226–31.

    Article  CAS  PubMed  Google Scholar 

  • Kvist AJ, et al. The major basement membrane components localize to the chondrocyte pericellular matrix—a cartilage basement membrane equivalent? Matrix Biol. 2008;27(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  • Lam J, et al. Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev. 2015;84:123–34.

    Article  CAS  PubMed  Google Scholar 

  • Lee CR, et al. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J Orthop Res. 2003;21(2):272–81.

    Article  CAS  PubMed  Google Scholar 

  • Lee KB, et al. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cells. 2007;25(11):2964–71.

    Article  PubMed  Google Scholar 

  • Lee KB, et al. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid–a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singapore. 2012;41(11):511–7.

    PubMed  Google Scholar 

  • Li J, et al. p38 MAPK mediated in compressive stress-induced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds. J Cell Physiol. 2009;221(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  • Lian Q, et al. Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. Stem Cells. 2007;25(2):425–36.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng. 2002;8(4):709–21.

    Article  CAS  PubMed  Google Scholar 

  • Liu TM, et al. Identification of common pathways mediating differentiation of bone marrow‐and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 2007;25(3):750–60.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, et al. A subpopulation of mesenchymal stromal cells with high osteogenic potential. J Cell Mol Med. 2009;13(8B):2436–47.

    Article  PubMed  Google Scholar 

  • Loeser RF. Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum. 1993;36(8):1103–10.

    Article  CAS  PubMed  Google Scholar 

  • Long D, et al. Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Res Ther. 2008;10(1):R23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maffulli N, King JB. Effects of physical activity on some components of the skeletal system. Sports Med. 1992;13(6):393–407.

    Article  CAS  PubMed  Google Scholar 

  • Mahomed M, Beaver R, Gross A. The long-term success of fresh, small fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint. Orthopedics. 1992;15(10):1191–9.

    CAS  PubMed  Google Scholar 

  • Marcacci M, et al. Multiple osteochondral arthroscopic grafting (mosaicplasty) for cartilage defects of the knee: prospective study results at 2-year follow-up. Arthroscopy. 2005a;21(4):462–70.

    Article  PubMed  Google Scholar 

  • Marcacci M, et al. Articular cartilage engineering with hyalograft (R) C: 3-year clinical results. Clin Orthop Relat Res. 2005b;435:96–105.

    Article  Google Scholar 

  • Martin G, et al. Effect of hypoxia and reoxygenation on gene expression and response to interleukin-1 in cultured articular chondrocytes. Arthritis Rheum. 2004;50(11):3549–60.

    Article  CAS  PubMed  Google Scholar 

  • Micheli LJ, et al. Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med. 2001;11(4):223–8.

    Article  CAS  PubMed  Google Scholar 

  • Miller BS, et al. Patient satisfaction and outcome after microfracture of the degenerative knee. J Knee Surg. 2004;17(1):13–7.

    PubMed  Google Scholar 

  • Millward-Sadler S, Salter D. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng. 2004;32(3):435–46.

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, et al. Integrins and stretch activated ion channels; putative components of functional cell surface mechanoreceptors in articular chondrocytes. Cell Biol Int. 2002;26(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, et al. Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopathol. 2009;24(3):347–66.

    CAS  PubMed  Google Scholar 

  • Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther. 2003;5(2):54–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mow V, et al. Experimental studies on repair of large osteochondral defects at a high weight bearing area of the knee joint: a tissue engineering study. J Biomech Eng. 1991;113(2):198–207.

    Article  CAS  PubMed  Google Scholar 

  • Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays. 1995;17(12):1039–48.

    Article  CAS  PubMed  Google Scholar 

  • Munir S, et al. Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell Tissue Res. 2014;355(1):89–102.

    Article  CAS  PubMed  Google Scholar 

  • Nehrer S, et al. Treatment of full-thickness chondral defects with hyalograft C in the knee a prospective clinical case series with 2 to 7 years’ follow-up. Am J Sports Med. 2009;37(1 Suppl):81S–7.

    Article  PubMed  Google Scholar 

  • Nejadnik H, et al. Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation an observational Cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  PubMed  Google Scholar 

  • Nettles DL, et al. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng. 2004;32(3):391–7.

    Article  PubMed  Google Scholar 

  • Nooeaid P, et al. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med. 2012;16(10):2247–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira JM, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27(36):6123–37.

    Article  CAS  PubMed  Google Scholar 

  • Orozco L, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–41.

    Article  CAS  PubMed  Google Scholar 

  • Outerbridge H, Outerbridge A, Outerbridge R. The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. J Bone Joint Surg. 1995;77(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  • Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep. 2011;5:296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panepucci RA, et al. Comparison of gene expression of umbilical cord vein and bone marrow–derived mesenchymal stem cells. Stem Cells. 2004;22(7):1263–78.

    Article  CAS  PubMed  Google Scholar 

  • Park KM, et al. RGD-conjugated chitosan-pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration. Macromol Res. 2008;16(6):517–23.

    Article  CAS  Google Scholar 

  • Payne KA, Didiano DM, Chu CR. Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthritis Cartilage. 2010;18(5):705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecina M, et al. Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop. 2002;26(3):131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelaez D, Arita N, Cheung HS. Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression. Biochem Biophys Res Commun. 2012;417(4):1286–91.

    Article  CAS  PubMed  Google Scholar 

  • Peterson L, et al. Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  Google Scholar 

  • Peterson L, et al. Autologous chondrocyte transplantation biomechanics and long-term durability. Am J Sports Med. 2002;30(1):2–12.

    PubMed  Google Scholar 

  • Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  • Poole CA, Flint MH, Beaumont BW. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res. 1987;5(4):509–22.

    Article  CAS  PubMed  Google Scholar 

  • Poole C, Ayad S, Schofield J. Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci. 1988;90(4):635–43.

    PubMed  Google Scholar 

  • Poole AR, et al. Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J Orthop Res. 1996;14(5):681–9.

    Article  CAS  PubMed  Google Scholar 

  • Quinn TM, et al. Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J Orthop Res. 1998;16(4):490–9.

    Article  CAS  PubMed  Google Scholar 

  • Rahfoth B, et al. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage. 1998;6(1):50–65.

    Article  CAS  PubMed  Google Scholar 

  • Raynauld J, et al. Effectiveness and safety of repeat courses of hylan GF 20 in patients with knee osteoarthritis. Osteoarthritis Cartilage. 2005;13(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  • Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9(23-32):23–32.

    Article  CAS  PubMed  Google Scholar 

  • Reiser J, et al. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther. 2005;5(12):1571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee DK, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115(3):622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson J, et al. Repair of human articular cartilage after implantation of autologous chondrocytes. J Bone Joint Surg Br Vol. 1999;81(6):1064–8.

    Article  CAS  Google Scholar 

  • Robins JC, et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 2005;37(3):313–22.

    Article  CAS  PubMed  Google Scholar 

  • Russlies M, et al. A cell-seeded biocomposite for cartilage repair. Ann Anat Anatomischer Anzeiger. 2002;184(4):317–23.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi Y, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521–9.

    Article  PubMed  Google Scholar 

  • Sekiya I, et al. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015;473(7):2316–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seol YJ, et al. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration. J Biomed Mater Res A. 2015;103(4):1404–13.

    Article  PubMed  CAS  Google Scholar 

  • Sha’ban M, et al. The use of fibrin and poly (lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis. Eur Cells Mater. 2008;15:41–52.

    Article  Google Scholar 

  • Shakibaei M. Inhibition of chondrogenesis by integrin antibody in vitro. Exp Cell Res. 1998;240(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed. 2006;17(1–2):103–19.

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa S, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84–97.

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, West LA, Hassell JR. The core protein of growth plate perlecan binds FGF-18 and alters its mitogenic effect on chondrocytes. Arch Biochem Biophys. 2007;468(2):244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Shu C, Melrose J. Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem Cell Biol. 2010;134(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  • Steadman J, Rodkey W, Briggs K. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2001a;15(3):170–6.

    Google Scholar 

  • Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001b;391:S362–9.

    Article  Google Scholar 

  • Steadman JR, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003a;19(5):477–84.

    Article  PubMed  Google Scholar 

  • Steadman JR, et al. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg. 2003b;16(2):83–6.

    PubMed  Google Scholar 

  • Steinwachs M, Guggi T, Kreuz P. Marrow stimulation techniques. Injury. 2008;39(1):26–31.

    Article  Google Scholar 

  • Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS. Recent progress in stem cell chondrogenesis. Progr Stem Cell. 2014;1(1):7–17.

    Article  Google Scholar 

  • Toh WS, Cao T. Derivation of chondrogenic cells from human embryonic stem cells for cartilage tissue engineering. Methods Mol Biol. 2016;1307:263–79. doi:10.1007/7651_2014_89.

    Article  Google Scholar 

  • Toh WS, Loh XJ. Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C. 2014;45:690–7.

    Article  CAS  Google Scholar 

  • Toh WS, et al. Combined effects of TGFβ1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors. 2005;23(4):313–21.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, et al. Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells. 2007;25(4):950–60.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, et al. In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods Mol Biol. 2010a;584:317–31.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, et al. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials. 2010b;31(27):6968–80.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, et al. Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Mol Pharm. 2011a;8(4):994–1001.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lee EH, Cao T. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev. 2011b;7(3):544–59.

    Article  PubMed  Google Scholar 

  • Toh WS, et al. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33(15):3835–45.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, et al. Basement membrane molecule expression attendant to chondrogenesis by nucleus pulposus cells and mesenchymal stem cells. J Orthop Res. 2013;31(7):1136–43.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, et al. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev. 2014;10(5):686–96.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, et al. Exploiting stem cell-extracellular matrix interactions for cartilage regeneration – a focus on basement membrane molecules. Curr Stem Cell Res Ther. 2015. doi:10.2174/1574888X10666150723150525.

    Google Scholar 

  • Trigkilidas D, Anand A. The effectiveness of hyaluronic acid intra-articular injections in managing osteoarthritic knee pain. Ann R Coll Surg Engl. 2013;95(8):545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uematsu K, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26(20):4273–9.

    Article  CAS  PubMed  Google Scholar 

  • Umeda K, et al. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep. 2012;2:455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vats A, et al. Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng. 2006;12(6):1687–97.

    Article  CAS  PubMed  Google Scholar 

  • Veronesi F, et al. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev. 2013;22(2):181–92.

    Article  CAS  PubMed  Google Scholar 

  • Vinardell T, et al. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A. 2012;18(11-12):1161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent T, et al. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage. 2007;15(7):752–63.

    Article  CAS  PubMed  Google Scholar 

  • Wakitani S, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg. 1994;76(4):579–92.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, et al. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A. 2009a;15(8):2259–66.

    Article  CAS  PubMed  Google Scholar 

  • Wang PY, et al. Dynamic compression modulates chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds. J Biomed Mater Res B Appl Biomater. 2009b;91(1):143–52.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, et al. Cell proliferation is promoted by compressive stress during early stage of chondrogenic differentiation of rat BMSCs. J Cell Physiol. 2013;228(9):1935–42.

    Article  CAS  PubMed  Google Scholar 

  • Wang LS, et al. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials. 2014;35(7):2207–17.

    Article  CAS  PubMed  Google Scholar 

  • Wilusz RE, DeFrate LE, Guilak F. A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol. 2012;31(6):320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014;39:25–32.

    Article  CAS  PubMed  Google Scholar 

  • Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5(8):2145–54.

    CAS  PubMed  Google Scholar 

  • Wohl G, et al. Mechanical integrity of subchondral bone in osteochondral autografts and allografts. Can J Surg. 1998;41(3):228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong KL, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29(12):2020–8.

    Article  PubMed  Google Scholar 

  • Wu L, et al. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: Perspectives from stem cell biology and molecular medicine. J Cell Physiol. 2013;228(5):938–44.

    Article  CAS  PubMed  Google Scholar 

  • Xue D, et al. Osteochondral repair using porous poly (lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res A. 2010;94(1):259–70.

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, et al. Stage-dependent effect of TGF-β1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev. 2009;18(6):929–40.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura H, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327(3):449–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z. Chondrons and the pericellular matrix of chondrocytes. Tissue Eng Part B Rev. 2014;21(3):267–77.

    Article  PubMed  Google Scholar 

  • Zheng S, Xia Y. The collagen fibril structure in the superficial zone of articular cartilage by μMRI. Osteoarthritis Cartilage. 2009;17(11):1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng MH, et al. Matrix-induced autologous chondrocyte implantation (MACI®): biological and histological assessment. Tissue Eng. 2007;13(4):737–46.

    Article  CAS  PubMed  Google Scholar 

  • Zheng YH, et al. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med. 2011;5(7):540–50.

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, et al. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng. 2006;12(11):3209–21.

    Article  CAS  PubMed  Google Scholar 

  • Zuscik MJ, et al. Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 2008;118(2):429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National University Health System, National University of Singapore (R221000070733, R221000077733, R221000083112 and R221000081133) and National Medical Research Council, Singapore (R221000080511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Seong Toh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parate, D.A., Zhang, S., Hui, J.H.P., Toh, W.S. (2016). Stem Cells for Articular Cartilage Repair and Regeneration. In: Pham, P. (eds) Bone and Cartilage Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-40144-7_7

Download citation

Publish with us

Policies and ethics