Skip to main content

Repair and Regeneration of Temporomandibular Joint: The Future of Stem Cell-Based Therapies

  • Chapter
  • First Online:
Bone and Cartilage Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Temporomandibular disorders (TMDs) are a collective term embracing a number of musculoskeletal and neuromuscular conditions involving the temporomandibular joints (TMJ), masticatory muscles and/or associated structures. It is the main cause of non-dental pain in the orofacial region. In addition to pain, other signs and symptoms of TMDs include ear complaints, jaw joint sounds, jaw function difficulties, limited or abnormal jaw movements as well as catching/locking of the jaws. Due to their diverse signs and symptoms, TMDs are frequently under and misdiagnosed in everyday medical and dental practice. Population studies show that approximately 75 % of people have signs, while 33 % have symptoms of TMDs. As such, most doctors and dentists will encounter patients with TMDs in a routine work week. TMDs can be classified into TMJ disorders, masticatory muscle disorders, headache disorders and associated structures. TMJ disorders are subclassified into joint pain, joint disorders including disc-condyle complex conditions, joint diseases, fractures and congenital/developmental disorders. This chapter aims to introduce the contemporary concepts of TMDs, their epidemiology, signs/symptoms and aetiology. The classification of TMDs is discussed with special emphasis on joint disorders, joint diseases and congenital/development disorders involving the TMJ disc, cartilage and bone, and their current treatment methods and clinical management. Stem cell-based therapies and therapeutics carries the significant potential for the repair and regeneration of complex craniofacial tissues including TMJ. Mesenchymal stem cells (MSCs) have been isolated from several tissues, including the bone marrow, teeth and synovium of TMJ, and have been reported to play an important role in repair and regeneration of several dental and craniofacial tissues including TMJ condylar cartilage and disc. Pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are discussed as alternative promising cell sources for tissue engineering of TMJ condylar cartilage and disc. Finally, some of the recent preclinical and clinical studies will be discussed to support the prospects of stem cell-based therapies as the emerging therapies for TMJ repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afizah H, Yang Z, Hui JHP, Ouyang H-W, Lee E-H. A comparison between the chondrogenic potential of human Bone Marrow Stem Cells (BMSCs) and Adipose-Derived Stem Cells (ADSCs) taken from the same donors. Tissue Eng. 2007;13:659–66.

    Article  CAS  PubMed  Google Scholar 

  • Ahn J-H, Lee T-H, Oh J-S, Kim S-Y, Kim H-J, Park I-K, et al. A novel hyaluronate–atelocollagen/β-TCP–hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng Part A. 2009;15:2595–604.

    Article  CAS  PubMed  Google Scholar 

  • Ahtiainen K, Mauno J, Ellä V, Hagström J, Lindqvist C, Miettinen S, et al. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. J R Soc Interface. 2013;10:20130287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alhadlaq A, Mao JJ. Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells. J Dent Res. 2003;82:951–6.

    Article  CAS  PubMed  Google Scholar 

  • Allen KD, Athanasiou KA. Effect of passage and topography on gene expression of temporomandibular joint disc cells. Tissue Eng. 2007;13:101–10.

    Article  CAS  PubMed  Google Scholar 

  • Al-Moraissi EA. Arthroscopy versus arthrocentesis in the management of internal derangement of the temporomandibular joint: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2015;44:104–12.

    Article  CAS  PubMed  Google Scholar 

  • Anastassaki Köhler A, Hugoson A, Magnusson T. Prevalence of symptoms indicative of TMD in adults – cross-sectional epidemiological investigations spanning two decades. Acta Odontol Scand. 2012;70:213–23.

    Article  PubMed  Google Scholar 

  • Anderson DEJ, Athanasiou KA. A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint. Arch Oral Biol. 2009;54:138–45.

    Article  CAS  PubMed  Google Scholar 

  • Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2, e161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One. 2014;9, e115963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buxton AN, Bahney CS, Yoo JU, Johnstone B. Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels. Tissue Eng Part A. 2010;17:371–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao T, Heng BC, Ye CP, Liu H, Toh WS, Robson P, et al. Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue Cell. 2005;37:325–34.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson GE. Long-term effects of treatment of craniomandibular disorders. J Craniomandib Pract. 1985;3:337–42.

    CAS  Google Scholar 

  • Chen K, Man C, Zhang B, Hu J, Zhu SS. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. Int J Oral Maxillofac Surg. 2013;42:240–8.

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Park EJ, Shin HS, Shin IS, Ra JC, Koh KS. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Ann Plast Surg. 2014;72:225–33.

    Article  CAS  PubMed  Google Scholar 

  • Ciocca L, Donati D, Ragazzini S, Dozza B, Rossi F, Fantini M, et al. Mesenchymal stem cells and platelet gel improve bone deposition within CAD-CAM custom-made ceramic HA scaffolds for condyle substitution. BioMed Res Int. 2013;2013:10.

    Article  CAS  Google Scholar 

  • Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci. 2001;98:7841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortés D, Exss E, Marholz C, Millas R, Moncada G. Association between disc position and degenerative bone changes of temporomandibular joints – an imaging study of subjects with TMD. Cranio. 2011;29:117–26.

    Article  PubMed  Google Scholar 

  • Costen JB. A syndrome of ear and sinus symptoms dependent on disturbed function of the Temporomandibular joint – 1934. Ann Otol Rhinol Laryngol. 1997;106(10 Pt 1):805–19.

    Article  CAS  PubMed  Google Scholar 

  • da Silva Meirelles L, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–27.

    Article  CAS  Google Scholar 

  • Dai W, Field LJ, Rubart M, Reuter S, Hale SL, Zweigerdt R, et al. Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol. 2007;43:504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Leeuw R, Klasser GD. Orofacial pain – guidelines for assessment, diagnosis and management. 5th ed. Illinois: Quintessence Publishing Co. Inc.; 2013. p. 127–67.

    Google Scholar 

  • de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci. 2013;110:8680–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza RF, Lovato da Silva CH, Nasser M, Fedorowicz Z, Al-Muharraqi MA. Interventions for the management of temporomandibular joint osteoarthritis. Cochrane Database Syst Rev. 2012;4, CD007261.

    Google Scholar 

  • Detamore MS, Athanasiou KA. Structure and function of the temporomandibular joint disc – implications for tissue engineering. J Oral Maxillofac Surg. 2003;61:494–506.

    Article  PubMed  Google Scholar 

  • Dolwick MF, Dimitroulis G. Is there a role for temporomandibular joint surgery? Br J Oral Maxillofac Surg. 1994;32:307–13.

    Article  CAS  PubMed  Google Scholar 

  • Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders – review, criteria, examinations and specifications, critique. J Craniomandib Disord. 1992;6:301–55.

    CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  • Farrar WB. Diagnosis and treatment of anterior dislocation of the articular disc. N Y J Dent. 1971;41:348–51.

    CAS  PubMed  Google Scholar 

  • Fillingim RB, Slade GD, Diatchenko L, Dubner R, Greenspan JD, Knott C, Ohrbach R, Maixner W. Summary of findings from the OPPERA baseline case-control study – implications and future directions. J Pain. 2011;12(11 Suppl):T102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forssell H, Kalso E. Application of principles of evidence-based medicine to occlusal treatment for temporomandibular disorders: are there lessons to be learned? J Orofac Pain. 2004;18:9–22.

    PubMed  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow: analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Chen Y, Xie F-N, Dong P, W-b L, Cao Y, et al. Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Tissue Eng Part A. 2014;21:616–26.

    Article  CAS  Google Scholar 

  • Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  PubMed  Google Scholar 

  • Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97:33–44.

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Estes B, Diekman B, Moutos F, Gimble J. Multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering. Clin Orthop Relat Res. 2010;468:2530–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzzo RM, Gibson J, Xu R-H, Lee FY, Drissi H. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem. 2013;114:480–90.

    Article  CAS  PubMed  Google Scholar 

  • Hagandora CK, Gao J, Wang Y, Almarza AJ. Poly (glycerol sebacate): a novel scaffold material for temporomandibular joint disc engineering. Tissue Eng Part A. 2012;19:729–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handorf AM, Li W-J. Induction of mesenchymal stem cell chondrogenesis through sequential administration of growth factors within specific temporal windows. J Cell Physiol. 2014;229:162–71.

    Article  CAS  PubMed  Google Scholar 

  • Helkimo E, Westling L. History, clinical findings and outcome of treatment of patients with anterior disc displacement. J Craniomandib Pract. 1987;5:270–6.

    Google Scholar 

  • Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP-6. J Cell Physiol. 2007;211:682–91.

    Article  CAS  PubMed  Google Scholar 

  • Ho STB, Hutmacher DW, Ekaputra AK, Hitendra D, Hui JH. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A. 2009;16:1123–41.

    Article  Google Scholar 

  • Hoben GM, Willard VP, Athanasiou KA. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev. 2008;18:283–92.

    Article  Google Scholar 

  • Holland TA, Bodde EWH, Cuijpers VMJI, Baggett LS, Tabata Y, Mikos AG, et al. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage. 2007;15:187–97.

    Article  CAS  PubMed  Google Scholar 

  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  CAS  PubMed  Google Scholar 

  • Huang GT-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132:1273–82.

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Kim DH, Ha J, Jin HJ, Kwon S-J, Chang JW, et al. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells. 2013;31:2136–48.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72.

    Article  CAS  PubMed  Google Scholar 

  • Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng Part B Rev. 2012;18:301–11.

    Article  CAS  PubMed  Google Scholar 

  • Karacayli U, Mumcu G, Cimilli H, Sisman N, Sur H, Gunaydin Y. The effects of chronic pain on oral health related quality of life in patients with anterior disc displacement without reduction. Community Dent Health. 2011;28:211–5.

    CAS  PubMed  Google Scholar 

  • Kidwai FK, Liu H, Toh WS, Fu X, Jokhun DS, Movahednia MM, et al. Differentiation of Human Embryonic Stem Cells into Clinically Amenable Keratinocytes in an Autogenic Environment. J Invest Dermatol. 2013;133:618–28.

    Article  CAS  PubMed  Google Scholar 

  • Ko J-Y, Kim K-I, Park S, Im G-I. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials. 2014;35:3571–81.

    Article  CAS  PubMed  Google Scholar 

  • Koay EJ, Athanasiou KA. Development of serum-free chemically defined conditions for human embryonic stem cell–derived fibrochondrogenesis. Tissue Eng Part A. 2009;15:2249–57.

    Article  CAS  PubMed  Google Scholar 

  • Koyama N, Okubo Y, Nakao K, Osawa K, Fujimura K, Bessho K. Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sci. 2011;89:741–7.

    Article  CAS  PubMed  Google Scholar 

  • Kupcova SH. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie. 2013;95:2196–211.

    Article  CAS  Google Scholar 

  • Lai RC, Yeo RWY, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol. 2015;40:82–8.

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  PubMed  Google Scholar 

  • Laskin DM. Etiology of the pain-dysfunction syndrome. J Am Dent Assoc. 1969;79:147–53.

    Article  CAS  PubMed  Google Scholar 

  • Lee J-Y, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication. 2013;5:045003.

    Article  PubMed  CAS  Google Scholar 

  • Lei J, Liu MQ, Yap AU, Fu KY. Sleep disturbance and psychological distress – prevalence in and risk indicators for temporomandibular disorders. J. Oral Facial Pain Headache. 2015;29:24–30.

    Article  Google Scholar 

  • LeResche L. Epidemiology of temporomandibular disorders – implications for the investigation of etiologic factors. Crit Rev Oral Biol Med. 1997;8:291–305.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia. 2005;49:407–17.

    Article  PubMed  Google Scholar 

  • Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, et al. Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. Stem Cells. 2007;25:425–36.

    Article  CAS  PubMed  Google Scholar 

  • Lim TC, Toh WS, Wang LS, Kurisawa M, Spector M. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials. 2012;33:3446–55.

    Article  CAS  PubMed  Google Scholar 

  • Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc. 1993;124:115–21.

    Article  CAS  PubMed  Google Scholar 

  • List T, Axelsson S. Management of TMD: evidence from systematic reviews and meta-analyses. J Oral Rehabil. 2010;37:430–51.

    Article  CAS  PubMed  Google Scholar 

  • Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 2007;25:750–60.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Toh WS, Lu K, MacAry PA, Kemeny DM, Cao T. A subpopulation of mesenchymal stromal cells with high osteogenic potential. J Cell Mol Med. 2009;13:2436–47.

    Article  PubMed  Google Scholar 

  • Lu Q, Pandya M, Rufaihah AJ, Rosa V, Tong HJ, Seliktar D, et al. Modulation of dental pulp stem cell odontogenesis in a tunable PEG-Fibrinogen hydrogel system. Stem Cells Int. 2015;2015:525367.

    Google Scholar 

  • Machado E, Bonotto D, Cunali PA. Intra-articular injections with corticosteroids and sodium hyaluronate for treating temporomandibular joint disorders: a systematic review. Dental Press J Orthod. 2013;18:128–33.

    Article  PubMed  Google Scholar 

  • Mäenpää K, Ellä V, Mauno J, Kellomäki M, Suuronen R, Ylikomi T, et al. Use of adipose stem cells and polylactide discs for tissue engineering of the temporomandibular joint disc. J R Soc Interface. 2009;7:177–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: Influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater. 2009;5:644–60.

    Article  CAS  PubMed  Google Scholar 

  • Manfredini D, Guarda-Nardini L, Winocur E, Piccotti F, Ahlberg J, Lobbezoo F. Research diagnostic criteria for temporomandibular disorders – a systematic review of Axis I epidemiologic findings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:453–62.

    Article  PubMed  Google Scholar 

  • Milam SB, Schmitz JP. Molecular biology of temporomandibular joints disorders – proposed mechanisms of disease. J Oral Maxillofac Surg. 1995;56:1448–54.

    Article  Google Scholar 

  • Milam SB, Zardeneta G, Schmitz JP. Oxidative stress and degenerative temporomandibular joint disease: a proposed hypothesis. J Oral Maxillofac Surg. 1998;56:214–23.

    Article  CAS  PubMed  Google Scholar 

  • Murphy MK, MacBarb RF, Wong ME, Athanasiou KA. Temporomandibular disorders – a review of etiology, clinical management and tissue engineering strategies. Oral Craniofac Tissue Eng. 2011;1:205–23.

    Google Scholar 

  • Nejadnik H, Hui JH, Feng Choong EP, Tai B-C, Lee EH. Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38:1110–6.

    Article  PubMed  Google Scholar 

  • Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–37.

    Article  CAS  PubMed  Google Scholar 

  • Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2, e941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17:761–74.

    Article  CAS  PubMed  Google Scholar 

  • Petrova A, Celli A, Jacquet L, Dafou D, Crumrine D, Hupe M, et al. 3D in vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Reports. 2014;2:675–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  • Randolph CS, Greene CS, Moretti R, Forbes D, Perry HT. Conservative management of temporomandibular disorders – a posttreatment comparison between patients from a university clinic and from private practice. Am J Orthod Dentofacial Orthop. 1990;98:77–82.

    Article  CAS  PubMed  Google Scholar 

  • Reyes R, Delgado A, Sánchez E, Fernández A, Hernández A, Evora C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate–PLGA scaffold. J Tissue Eng Regen Med. 2014;8:521–33.

    CAS  PubMed  Google Scholar 

  • Rollman GB, Gillespie JM. The role of psychosocial factors in Temporomandibular Disorders. Curr Rev Pain. 2000;4:71–81.

    Article  CAS  PubMed  Google Scholar 

  • Rufaihah AJ, Haider HK, Heng BC, Ye L, Toh WS, Tian XF, et al. Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing the VEGF165 gene. J Gene Med. 2007;9:452–61.

    Article  CAS  PubMed  Google Scholar 

  • Rufaihah AJ, Haider HK, Heng BC, Ye L, Tan RS, Toh WS, et al. Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regen Med. 2010;5:231–44.

    Article  CAS  PubMed  Google Scholar 

  • Rugh JD. Psychological components of pain. Dent Clin North Am. 1987;31:579–94.

    CAS  PubMed  Google Scholar 

  • Rugh JD, Solberg WK. Oral health status in the United States – temporomandibular disorders. J Dent Edu. 1985;49:398–404.

    CAS  Google Scholar 

  • Sanchez-Adams J, Athanasiou KA. Dermis isolated adult stem cells for cartilage tissue engineering. Biomaterials. 2012;33:109–19.

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Osterberg T, Ahlqwist M, Carlsson GE, Gröndahl HG, Rubinstein B. Association between radiographic findings in the mandibular condyle and temporomandibular dysfunction in an elderly population. Acta Odontol Scand. 1996;54:384–90.

    Article  CAS  PubMed  Google Scholar 

  • Schiffman EL, Fricton JR, Haley DP, Shapiro BL. The prevalence and treatment needs of subjects with temporomandibular disorders. J Am Dent Assoc. 1990;120:295–303.

    Article  CAS  PubMed  Google Scholar 

  • Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J Oral Facial Pain Headache. 2014;28:6–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci. 2010;107:3293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons HC, Gibbs SJ. Anterior repositioning appliance therapy for TMJ disorders – Specific symptoms relieved and relation to disk status on MRI. Cranio. 2005;23:89–99.

    Article  PubMed  Google Scholar 

  • Sun YP, Zheng YH, Liu WJ, Zheng Y, Zhang ZG. Synovium fragment-derived cells exhibit characteristics similar to those of dissociated multipotent cells in synovial fluid of the temporomandibular joint. PLoS One. 2014;9, e101896.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suvinen TI, Reade PC, Kemppainen P, Könönen M, Dworkin SF. Review of concepts of temporomandibular pain disorders: towards a biopsychosocial model for integration of physical disorder factors with psychological and psychosocial illness impact factors. Eur J Pain. 2005;9:613–33.

    Article  PubMed  Google Scholar 

  • Sze SK, de Kleijn DPV, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics. 2007;6:1680–9.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res. 2008;87:296–307.

    Article  CAS  PubMed  Google Scholar 

  • Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg. 2005;80:229–37.

    Article  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Loh XJ. Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C. 2014;45:690–7.

    Article  CAS  Google Scholar 

  • Toh WS, Liu H, Heng BC, Rufaihah AJ, Ye CP, Cao T. Combined effects of TGFβ1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors. 2005;23:313–21.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T. Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells. 2007;25:950–60.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Guo X-M, Choo AB, Lu K, Lee EH, Cao T. Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. J Cell Mol Med. 2009;13:3570–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toh WS, Lee EH, Guo X-M, Chan JKY, Yeow CH, Choo AB, et al. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials. 2010a;31:6968–80.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lee EH, Richards M, Cao T. In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods Mol Biol. 2010b;584:317–31.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Spector M, Lee EH, Cao T. Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Mol Pharm. 2011;8:994–1001.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33:3835–45.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Foldager CB, Pei M, Hui JH. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev. 2014;10:686–96.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Toh YC, Loh XJ. Hydrogels for stem cell fate control and delivery in regenerative medicine. In: Loh XJ, editor. In-situ gelling polymers. Singapore: Springer; 2015. p. 187–214.

    Google Scholar 

  • Türp JC, Schindler H. Dental occlusion as a suspected cause of TMDs – epidemiological and etiological considerations. J Oral Rehabil. 2012;39:502–12.

    Article  PubMed  Google Scholar 

  • Umeda K, Zhao J, Simmons P, Stanley E, Elefanty A, Nakayama N. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep. 2012;2:455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umeda K, Oda H, Yan Q, Matthias N, Zhao J, Davis Brian R, et al. Long-term expandable SOX9+ chondrogenic ectomesenchymal cells from human pluripotent stem cells. Stem Cell Reports. 2015;4:712–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials. 2007;28:5401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011;5:146–50.

    Article  PubMed  Google Scholar 

  • Wang L, Detamore MS. Tissue Engineering the Mandibular Condyle. Tissue Eng. 2007;13:1955–71.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS. A comparison of human bone marrow–derived mesenchymal stem cells and human umbilical cord–derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A. 2009;15:2259–66.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Rahnama R, Cheng T, Grotkopp E, Jacobs L, Limburg S, et al. Trophic stimulation of articular chondrocytes by late-passage mesenchymal stem cells in coculture. J Orthop Res. 2013;31:1936–42.

    Article  CAS  PubMed  Google Scholar 

  • Wang LS, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa M. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials. 2014;35:2207–17.

    Article  CAS  PubMed  Google Scholar 

  • Wilkes CH. Internal derangements of the temporomandibular joint – pathological variations. Arch Otolaryngol Head Neck Surg. 1989;115:469–77.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Leijten JCH, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011;17:1425–36.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Gong Z, Li J, Meng Q, Fang W, Long X. The pilot study of fibrin with temporomandibular joint derived synovial stem cells in repairing TMJ disc perforation. BioMed Res Int. 2014;2014:10.

    Google Scholar 

  • Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008–18.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Sui L, Toh WS, Lee EH, Cao T. Stage-dependent effect of TGF-β1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev. 2009;18:929–40.

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, et al. Bioglass®/chitosan–polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J Biomed Mater Res A. 2014;102:4510–8.

    PubMed  Google Scholar 

  • Yap AU. An introduction to temporomandibular disorders. Dental Asia. 2003;3:10–8.

    Google Scholar 

  • Yap AU, Tan KB, Chua EK, Tan HH. Depression and somatization in patients with temporomandibular disorders. J Prosthet Dent. 2002;88:479–84.

    Article  PubMed  Google Scholar 

  • Yap AU, Dworkin SF, Chua EK, List T, Tan KB, Tan HH. Prevalence of temporomandibular disorders subtypes, psychologic distress and psychosocial dysfunction in Asian TMD patients. J Orofac Pain. 2003;17:21–8.

    PubMed  Google Scholar 

  • Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327:449–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol. 2014a;5:518.

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guo F, Mi J, Zhang Z. Periodontal ligament mesenchymal stromal cells increase proliferation and glycosaminoglycans formation of temporomandibular joint derived fibrochondrocytes. BioMed Res Int. 2014b;2014:8.

    Google Scholar 

  • Zhang S, Yap AU, Toh WS. Stem cells for temporomandibular joint repair and regeneration. Stem Cell Rev. 2015a;11:728–42.

    Google Scholar 

  • Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, et al. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Mater Sci Eng C. 2015b;46:10–5.

    Article  CAS  Google Scholar 

  • Zheng Y-H, Su K, Jian Y-T, Kuang S-J, Zhang Z-G. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med. 2011;5:540–50.

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National University Healthcare System, National University of Singapore (R221000067133, R221000070733, R221000077733 and R221000083112) and National Medical Research Council Singapore (R221000080511).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrian U. Jin Yap or Wei Seong Toh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yap, A.U.J., Toh, W.S. (2016). Repair and Regeneration of Temporomandibular Joint: The Future of Stem Cell-Based Therapies. In: Pham, P. (eds) Bone and Cartilage Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-40144-7_3

Download citation

Publish with us

Policies and ethics